首页> 外文会议>Annual Conference of Japanese Society for Medical and Biological Engineering;Annual International Conference of the IEEE Engineering in Medicine and Biology Society >A graph-theoretical analysis algorithm for quantifying the transition from sensory input to motor output by an emotional stimulus
【24h】

A graph-theoretical analysis algorithm for quantifying the transition from sensory input to motor output by an emotional stimulus

机译:一种图论分析算法,用于量化情绪刺激从感觉输入到运动输出的过渡

获取原文

摘要

Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.
机译:图论分析算法已用于在默认模式状态下识别人脑中的子网。在这里,这些方法被扩展为利用信号强度时间过程之间的相关强度作为同步性的度量,在进近避免范例的执行过程中确定感觉和运动子网的相互作用。根据9名健康志愿者的功能磁共振成像(fMRI)数据,确定了两个信号时间过程,一个来自初级视觉皮层(感觉输入),一个来自运动皮层(运动输出),并计算了相关差异图。从该地图创建图形网络,并在原始解剖空间中使用弹簧嵌入式布局和3D布局进行可视化。这些网络中的功能集群是使用MCODE集群算法识别的。通过这些簇的相互作用强度来量化感觉子网络和运动子网络之间的相互作用。涉及视觉皮层的相互作用百分比范围为85%至18%,运动皮层的范围为40%至9%。具有高交互作用的其他区域是:额叶皮层(19±18%),绝缘岛(17±22%),楔形肌(16±15%),辅助运动区(SMA,11±18%)和皮质下区域(11±10) %)。在所有相互作用中,运动皮层,SMA和视皮层之间的相互作用占12%,视觉皮层和楔骨之间的相互作用占8%,运动皮层,SMA和楔骨之间的相互作用占6%。这些定量结果得到2D和3D网络布局的视觉印象的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号