【24h】

Throughput and Delay in Wireless Networks

机译:无线网络的吞吐量和延迟

获取原文
获取原文并翻译 | 示例

摘要

Gupta and Kumar (2000) introduced a random network model to study how throughput scales in a fixed wireless network when nodes are fixed, and showed that when n distinct source-destination pairs are chosen at random the throughput per source-destination pair is Θ(1/ (n log n)~(1/2)). Grossglauser and Tse (2001) showed that in the presence of mobility throughput per source-destination pair increases all the way to Θ(1). In this paper, we study the throughput region of fixed random networks, that is the set of all possible achievable rate-tuple λ = (λ_(ij))_(1 ≤ i,j ≤ n), where λ_(ij) is the rate at which node i sends data to node j. We show that λ is achievable as long as net rate at which data sent from any node and net rate at which data is received at any node is O(1/ (n log n)~(1/2)), that is ∑_k λ_(ik) and ∑_k λ_(ki) are O(1/ (n log n)~(1/2)) for all i. To demonstrate achievability, we present a scheme based on idea of Valiant and Brenber (1982) for oblivious routing in grid-networks. The maximal throughput achieving scheme of Grossglauser and Tse (2001) utilizes a similar idea. Thus, in addition to characterizing the throughput region, this work also provides a conceptual unification of the throughput maximal schemes for fixed and mobile networks. Another important performance metric is delay. For fixed random networks, El Gamal, Mammen, Prabhakar and Shah (2004) obtained the optimal delay scaling of Θ((n/log n)~(1/2)) at the throughput of Θ (1/ (n log n)~(1/2)) when packet size is allowed to scale down. We show that this delay scaling is achievable even when the packets are of fixed size. This requires a non-trivial scheduling scheme in addition to a routing scheme. We obtain such a scheduling scheme by simulating a last come first serve (LCFS) continuous network. We use results of Kelly (1979) regarding the product form of queue-size distribution in a network of symmetric queues to analyze the delay of our scheme.
机译:Gupta和Kumar(2000)引入了一个随机网络模型来研究节点固定时固定无线网络的吞吐量如何扩展,并表明当随机选择n个不同的源-目标对时,每个源-目标对的吞吐量为Θ( 1 /(n log n)〜(1/2))。 Grossglauser和Tse(2001)表明,在存在移动性的情况下,每个源-目的地对的吞吐量一直增加到Θ(1)。在本文中,我们研究固定随机网络的吞吐量区域,即所有可能达到的速率元组λ=(λ_(ij))_(1≤i,j≤n)的集合,其中λ_(ij)为节点i向节点j发送数据的速率。我们证明,只要从任何节点发送的数据的净速率和在任何节点接收的数据的净速率为O(1 /(n log n)〜(1/2)),即∑,就可以实现λ。 _kλ_(ik)和∑_kλ_(ki)对于所有i均为O(1 /(n log n)〜(1/2))。为了证明可实现性,我们提出了一种基于Valiant和Brenber(1982)的思想的方案,该方案用于网格网络中的遗忘路由。 Grossglauser and Tse(2001)的最大吞吐量实现方案采用了类似的想法。因此,除了表征吞吐量区域之外,这项工作还为固定网络和移动网络提供了吞吐量最大方案的概念统一。另一个重要的性能指标是延迟。对于固定随机网络,El Gamal,Mammen,Prabhakar和Shah(2004)在吞吐量为Θ(1 /(n log n)的情况下获得了Θ((n / log n)〜(1/2))的最佳延迟定标。 〜(1/2)),如果允许缩小数据包大小。我们表明,即使数据包的大小固定,也可以实现这种延迟缩放。除了路由方案之外,这还需要非平凡的调度方案。我们通过模拟后到先服务(LCFS)连续网络来获得这种调度方案。我们使用Kelly(1979)关于对称队列网络中队列大小分布的乘积形式的结果来分析我们的方案的延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号