首页> 外文会议>American Society of Mechanical Engineers(ASME)/Society of Tribologists and Lubrication Engineers(STLE) International Joint Tribology Conference; 20071022-24; San Diego,CA(US) >A Method for Determining the Non-Gaussian Probability Density Functions of Asperity Heights for Two Contact Surface Conditions
【24h】

A Method for Determining the Non-Gaussian Probability Density Functions of Asperity Heights for Two Contact Surface Conditions

机译:确定两个接触面条件下凹凸高度的非高斯概率密度函数的方法

获取原文
获取原文并翻译 | 示例

摘要

Most statistical contact analyses assume that asperity height distributions (g(z~*) ) follow a Gaussian distribution. However, engineered surfaces are frequently the non-Gaussian with a character dependent upon the material and surface state being evaluated. When two rough surfaces experience contact deformations, the original topography of the surfaces varies with different loads. Two kinds of topographies are considered in the present study. The first kind of topography is obtained during the contact of two surfaces under a normal load. The second kind of topography is obtained from a rough contact surface after the end of the elastic recovery. The g(z ) profile is quite sharp and has a large value at its peak if it is obtained from the surface contacts under a normal load. The g(z ) profile defined for a contact surface after the elastic recovery is quite close to the g(z~-) profile before contact deformations occur if the plasticity index is a small value. However, the g(z~*) profile for the contact surface after the end of elastic recovery is closer to the g (z~*) profile shown in the contacts under a normal load if a large plasticity index is assumed. Skewness (Sk) and kurtosis (Kt), which are the parameters in the probability density function, are affected by the change in the mean separation of two contact surfaces, or the initial skewness (the initial kurtosis is fixed in this study), or the plasticity index of the rough surface are also discussed on the basis of the topography models mentioned above.
机译:大多数统计接触分析都假设粗糙高度分布(g(z〜*))遵循高斯分布。但是,工程表面通常是非高斯表面,其特征取决于所评估的材料和表面状态。当两个粗糙表面经历接触变形时,这些表面的原始形貌会随着不同的载荷而变化。在本研究中考虑了两种地形。第一种形貌是在法向载荷下两个表面接触期间获得的。第二种形貌是在弹性恢复结束后从粗糙的接触表面获得的。如果g(z)轮廓是从法向载荷下的表面接触获得的,则其轮廓非常清晰,并且在其峰值处具有较大的值。如果可塑性指数较小,则在弹性恢复后为接触表面定义的g(z)轮廓与发生接触变形之前的g(z-)轮廓非常接近。但是,假设可塑性指数大时,弹性回复结束后的接触面的g(z〜*)曲线更接近于正常载荷下触头所示的g(z〜*)曲线。偏斜度(Sk)和峰度(Kt)是概率密度函数中的参数,受两个接触面平均间距的变化或初始偏度的影响(初始峰度在本研究中是固定的),或者还根据上述形貌模型讨论了粗糙表面的可塑性指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号