首页> 外文会议>AIAA/ISSMO multidisciplinary analysis and optimization conference >Reliability Based Multidisciplinary Optimization of Aeroelastic Systems with Structural and Aerodynamic Uncertainties
【24h】

Reliability Based Multidisciplinary Optimization of Aeroelastic Systems with Structural and Aerodynamic Uncertainties

机译:具有结构和气动不确定性的气动弹性系统基于可靠性的多学科优化

获取原文

摘要

In engineering design, uncertainties related to geometries, material properties, manufacturing processes and operating conditions are inevitable factors which should be accurately quantified and included while designing and optimizing a realistic system for a required level of reliability and efficiency. In this paper, a reliability based multidisciplinary optimization framework is constructed by coupling high-fidelity commercial solvers for aeroelastic analysis and an in-house code developed for reliability analysis. In this computational framework, finite volume based flow solver Fluent is used to solve inviscid 3D Euler equations and Catia is used as a parametric 3D solid modeler. Abaqus, a structural finite element method solver, is used to compute the structural response of the aeroelastic system. Mpcci, mesh based parallel code coupling interface, is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled aeroelastic analysis. Modefrontier is employed as a multi-objective and multi-disciplinary optimization driver to control the optimization work flow. The optimization criteria include both deterministic and probabilistic constraints with both structural and aerodynamic uncertainties such as in allowable stress, Mach number and angle of attack. To optimize the probability of failure for the probabilistic constraints, a first order reliability analysis method, Hassofer-Lind iteration method is implemented in Matlab to compute MPP (Most Probable failure Point) solution. The integrated framework is validated with academic and structural problems and then extended to more realistic wing configurations with aeroelastic criteria. The presented reliability based multidisciplinary optimization process is proven to be fully-automatic, modular and practical which could find potential applications in industrial problems.
机译:在工程设计中,与几何形状,材料特性,制造工艺和操作条件有关的不确定性是不可避免的因素,在为所需的可靠性和效率水平设计和优化实际系统时,应准确地量化和包括这些不确定性。在本文中,通过结合用于航空弹性分析的高保真商业求解器和为可靠性分析开发的内部代码,构建了基于可靠性的多学科优化框架。在此计算框架中,基于有限体积的流动求解器Fluent用于求解不粘稠的3D Euler方程,而Catia用作参数3D实体建模器。结构有限元方法求解器Abaqus用于计算气动弹性系统的结构响应。 Mpcci是基于网格的并行代码耦合接口,用于在Fluent和Abaqus之间交换压力和位移信息,以进行松散耦合的气动弹性分析。 Modefrontier被用作多目标,多学科的优化驱动程序,以控制优化工作流程。优化标准包括确定性和概率性约束,以及结构和空气动力学不确定性,例如容许应力,马赫数和攻角。为了针对概率约束优化故障概率,在Matlab中实现了一级可靠性分析方法Hassofer-Lind迭代方法,以计算MPP(最可能故障点)解决方案。集成框架经过学术和结构问题的验证,然后扩展到更符合航空弹性标准的机翼构型。事实证明,所提出的基于可靠性的多学科优化过程是全自动,模块化和实用的,可以在工业问题中找到潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号