首页> 外文会议>AIAA aviation forum >Enhancement of Gas Pumping and Heat Transfer Using a Two-Stage Electrohydrodynamic Pump Operated at Uneven Applied Voltage
【24h】

Enhancement of Gas Pumping and Heat Transfer Using a Two-Stage Electrohydrodynamic Pump Operated at Uneven Applied Voltage

机译:使用在不均匀施加电压下运行的两级电动流体动力泵增强气体泵送和传热

获取原文

摘要

A two-stage electrohydrodynamic (EHD) gas pump inside a square channel is numerically examined for its potential in the enhancement of gas pumping and heat transfer. The gas pump with 28 emitting electrodes in each stage is charged at a combination of three different operating voltages (20 kV, 24 kV, and 28 kV) for the possible performance improvement. The emitting electrodes are flush mounted on the channel walls so that the corona wind produced can directly disturb the development of momentum and thermal boundary layers to create maximum enhancement in gas pumping and heat transfer. The pumping power required for the heat transfer enhancement is also critically evaluated. The enhancement produced by the EHD gas pump is found to be higher than other techniques and with a smaller power penalty. The overall effectiveness of the EHD gas pump in the enhancement is evaluated using the thermal hydraulic parameter, (Nu/Nu_0)/(f/f_0), which is defined as the ratio of heat transfer enhancement over the power penalty. It is found that this parameter is always greater than unity for the EHD pump considered. These results reveal that EHD gas pump has a great potential for applications in thermal management and can be more energy-efficient when operated with uneven applied voltages.
机译:对方形通道内的两级电动液力(EHD)气泵进行了数值检查,以探讨其在增强气泵和传热方面的潜力。每个阶段中具有28个发射电极的气泵以三种不同的工作电压(20 kV,24 kV和28 kV)组合充电,以实现可能的性能改善。发射电极齐平安装在通道壁上,这样产生的电晕风会直接干扰动量和热边界层的发展,从而最大程度地增强抽气和传热。还严格评估了增强传热所需的泵浦功率。发现EHD气泵产生的增强效果比其他技术更高,并且功率损失也更小。使用热液压参数(Nu / Nu_0)/(f / f_0)评估EHD气泵在增强方面的总体有效性,该参数被定义为传热增强与功率损失的比率。对于所考虑的EHD泵,发现该参数始终大于1。这些结果表明,EHD气泵在热管理方面具有巨大的潜力,并且在不均匀施加电压下运行时可以更加节能。

著录项

  • 来源
    《AIAA aviation forum》|2019年|646-661|共16页
  • 会议地点 Dallas(US)
  • 作者单位

    Saginaw Valley State University University Center MI 48710 USA;

    University of Oklahoma Norman Oklahoma 73019 U.S.A.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号