【24h】

Cracking Mill Performance and Developments

机译:裂解厂的性能和发展

获取原文
获取原文并翻译 | 示例

摘要

Using the coarsest roll corrugations that will obtain an acceptable particle size is the best way to minimize fines production and maximize roll corrugation life. For most hot dehulling systems this means 3-1/2 corrugations per inch for the top pair of rolls, and typically 5 corrugations per inch for the bottom pair of rolls. For cold processes, the top corrugations may be either 3-1/2 or 5 corrugations per inch depending on the type and size of soybeans processed. The bottom rolls will typically be 5 or 6 corrugations per inch. Using a 5-5 combination in both the top and bottom rolls may reduce the inventory of spare rolls, and greatly decreases the chances of rolls being installed in the wrong position. For hot dehulling systems, higher roll speed differentials will be required for the cracking rolls, Typically the ratio will be 2:1 to insure a clean cut of the soybean. Even so, the cracked beans from a hot dehulling system will be more elongated and sliver like than the particles produced in cold operations. When a single pair of rolls are used simply to split the bean into 1/2's, a lower ratio of 1.5:1 will generally be acceptable. In cold processed, roll speed differential ratios on the order of 1.5:1 will provide the best results in terms of minimizing fines while providing good hull separation. The 1.5:1 ratio will also promote good roll corrugation life if the cracking mill is properly maintained and operated. The fast roll speed of the cracking mill is important for both machine capacity, and to reduce any tendency for problems with the belt drives (higher speeds =lower tension in the belts). Depending on the diameter of the rolls, fast roll speeds from 750 to nearly 1000 RPM yielding peripheral speeds from 2,500 Ft/Min (10″ diameter) to 3,100 Ft/Min (12″ and 16″ diameter) will be most productive. Lower roll speeds may improve roll corrugation life by reducing slip, but can lead to increased fines production due to higher loading in the nip of the rolls.
机译:使用将获得可接受的粒度的最粗糙的辊形波纹是最小化细粉产量并最大化辊形波纹寿命的最佳方法。对于大多数热脱壳系统,这意味着顶部对辊每英寸有3-1 / 2瓦楞,而底部辊对通常每英寸5个瓦楞。对于冷加工,顶部波纹可以是每英寸3-1 / 2或5个波纹,具体取决于所加工大豆的类型和尺寸。底辊通常为每英寸5或6个波纹。在顶部和底部辊中使用5-5的组合可以减少备用辊的库存,并大大减少将辊安装在错误位置的机会。对于热脱皮系统,裂化辊将需要更高的辊速差。通常,该比率应为2:1,以确保大豆的干净切面。即便如此,来自热脱皮系统的碎豆将比冷作业中产生的颗粒更细长且更像银。当仅使用一对面包卷将豆分成1/2时,通常可以接受1.5:1的较低比例。在冷加工中,在最小化细度的同时提供良好的船体分离效果,大约1.5:1的滚动速度差比将提供最佳结果。如果适当地维护和操作裂化机,则1.5:1的比例还可以延长轧辊的波纹寿命。裂解机的快速轧制速度对于两个机器的产能以及减少皮带驱动器出现问题的趋势都很重要(更高的速度=皮带中的张力更低)。根据轧辊直径的不同,从750到近1000 RPM的快速轧辊速度会产生从2500 Ft / Min(直径10“的直径)到3,100 Ft / Min(直径12”和16“)的圆周速度。较低的辊速度可通过减少打滑来延长辊的波纹寿命,但由于辊压区中的较高负荷,可导致细粉产量增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号