首页> 外文会议>Advances in structures, properties and applications of biological and bioinspired materials >Microstructure, Spectroscopic Studies and Nanomechanical Properties of Human Cortical Bone with Osteogenesis Imperfecta
【24h】

Microstructure, Spectroscopic Studies and Nanomechanical Properties of Human Cortical Bone with Osteogenesis Imperfecta

机译:成骨不全症人皮质骨的显微结构,光谱学研究和纳米力学性能

获取原文
获取原文并翻译 | 示例

摘要

Bone is a natural protein (collagen)-mineral (hydroxyapatite) nanocomposite with hierarchically organized structure. Our previous work has demonstrated orientational differences in stoichiometry of hydroxyapatite resulting from orientationally dependent collagen-mineral interactions in bone. The nature of these interactions has been investigated both through molecular dynamics simulations as well as nanomechanical and infrared spectroscopic experiments. In this study, we report experimental studies on human cortical bone with osteogenesis imperfecta (OI), a disease characterized by fragility of bones and other tissues rich in type I collagen. About 90% of OI cases result from causative variant in one of the two structural genes (COL1A1 or COL1A2) for type I procollagens. Ol provides an interesting platform for investigating how alterations of collagen at the molecular level cause changes in structure and mechanics of bone. Fourier transform spectroscopy, electron microscopy (SEM), and nanomechanical experiments describe the structural and molecular differences in bone ultrastructure due to presence of diseases. Photoacoustic-Fourier transform infrared spectroscopy (PA-FTIR) experiments have been conducted to investigate the orientational differences in molecular structure of 01 bone, which is also compared with that of healthy human cortical bone. Further, in situ SEM static nanomechanical testing is conducted in the transverse and longitudinal directions in the OI bone. Microstructural defects and abnormities of OI bone were ascertained using scanning electron microscopies. These results provide an insight into molecular basis of deformation and mechanical behavior of healthy human bone and 01 bone.
机译:骨是具有分层组织结构的天然蛋白质(胶原蛋白)-矿物质(羟基磷灰石)纳米复合材料。我们以前的工作已证明,由于骨中与方向有关的胶原-矿物质相互作用,羟基磷灰石的化学计量存在方向差异。这些相互作用的性质已经通过分子动力学模拟以及纳米机械和红外光谱实验进行了研究。在这项研究中,我们报告了具有成骨不全症(OI)的人类皮质骨的实验研究,该疾病的特征是骨骼和富含I型胶原的其他组织的脆性。约90%的OI病例是由I型前胶原的两个结构基因之一(COL1A1或COL1A2)的致病变异引起的。 Ol提供了一个有趣的平台,用于研究分子水平的胶原蛋白改变如何引起骨骼结构和力学变化。傅里叶变换光谱,电子显微镜(SEM)和纳米机械实验描述了由于疾病的存在而导致的骨骼超微结构的结构和分子差异。已经进行了光声-傅立叶变换红外光谱(PA-FTIR)实验,以研究01骨分子结构的取向差异,并将其与健康人的皮质骨进行比较。此外,在OI骨中沿横向和纵向进行原位SEM静态纳米力学测试。使用扫描电子显微镜确定OI骨的微结构缺陷和异常。这些结果提供了对健康的人类骨骼和01骨骼的变形和机械行为的分子基础的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号