首页> 外文会议>Advanced microscopy techniques III >Neural plasticity explored by correlative two-photon and electron/SPIM microscopy
【24h】

Neural plasticity explored by correlative two-photon and electron/SPIM microscopy

机译:相关双光子和电子/ SPIM显微镜探索神经可塑性

获取原文
获取原文并翻译 | 示例

摘要

Plasticity of the central nervous system is a complex process which involves the remodeling of neuronal processes and synaptic contacts. However, a single imaging technique can reveal only a small part of this complex machinery. To obtain a more complete view, complementary approaches should be combined. Two-photon fluorescence microscopy, combined with multi-photon laser nanosurgery, allow following the real-time dynamics of single neuronal processes in the cerebral cortex of living mice. The structural rearrangement elicited by this highly confined paradigm of injury can be imaged in vivo first, and then the same neuron could be retrieved ex-vivo and characterized in terms of ultrastructural features of the damaged neuronal branch by means of electron microscopy. Afterwards, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, based on the use of major blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from its apical portion, the whole pyramidal neuron can then be segmented and located in the correct cortical layer. With the correlative approach presented here, researchers will be able to place in a three-dimensional anatomic context the neurons whose dynamics have been observed with high detail in vivo.
机译:中枢神经系统的可塑性是一个复杂的过程,涉及神经元过程和突触接触的重塑。但是,单个成像技术只能显示出这种复杂机器的一小部分。为了获得更完整的视图,应该结合使用补充方法。双光子荧光显微镜与多光子激光纳米外科技术相结合,可以跟踪活体小鼠大脑皮层中单个神经元过程的实时动态。由这种高度局限的损伤范例引起的结构重排可以首先在体内成像,然后可以从体内取出同一神经元,并通过电子显微镜根据受损神经元分支的超微结构特征进行表征。之后,我们基于主要血管作为参考图,描述了一种整合来自体内双光子荧光成像和离体光片显微镜术的数据的方法。我们显示如何在活体小鼠中成像的单个皮质锥体神经元的顶端树突状乔木可以在用光片显微镜获得的大规模脑重建中找到。从其顶端部分开始,整个锥体神经元可随后被分割并位于正确的皮质层中。通过此处介绍的相关方法,研究人员将能够在三维解剖环境中放置神经元,这些神经元的动态特性已在体内得到了高度详细的观察。

著录项

  • 来源
    《Advanced microscopy techniques III》|2013年|87970G.1-87970G.6|共6页
  • 会议地点 Munich(DE)
  • 作者单位

    LENS, Univ. of Florence, Sesto Fiorentino, Italy;

    LENS, Univ. of Florence, Sesto Fiorentino, Italy;

    LENS, Univ. of Florence, Sesto Fiorentino, Italy;

    LENS, Univ. of Florence, Sesto Fiorentino, Italy,International Center of Computational Neurophotonics (ICON), Italy;

    Ctr. Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland;

    Ctr. Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland;

    LENS, Univ. of Florence, Sesto Fiorentino, Italy,International Center of Computational Neurophotonics (ICON), Italy,Dept. of Physics, Univ. of Florence,Sesto Fiorentino, Italy,International Center of Computational Neurophotonics (ICON), Italy;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    in vivo imaging; neuronal regrowth; structural plasticity; laser axotomy; light-sheet microscopy; neuronal 3D reconstruction;

    机译:体内成像;神经元再生长;结构可塑性激光切开;光学片显微镜神经元3D重建;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号