首页> 外文会议>Advanced Manfacture: Focusing on New and Emerging Technologies >Experiment Study and Numerical Analysis of Flow and Heat Transfer in (110) Silicon Base MicroChannel
【24h】

Experiment Study and Numerical Analysis of Flow and Heat Transfer in (110) Silicon Base MicroChannel

机译:(110)硅基微通道流动与传热的实验研究与数值分析

获取原文
获取原文并翻译 | 示例

摘要

MicroChannel heat sink is fabricated on silicon wafer by anisotropic etching, and used Pyrex #7740 as a transparent cover that integrated by anodic bonding. Rectangular microchannel presents the flow phenomena of fluid in micro scale, and this study focus on the boundary conditions which hydraulic diameter (D_h) is from 80μm to 350μm and Aspect ratio is from 0.24-7.8 of working fluid (DI water). While the size of microchannel is decreasing, laminar flow occurs on the low Reynolds number, which caused by the interaction of viscosity and friction on boundary layer. Sequentially, the influence of dimension decreasing on microchannel that induced transition and turbulent flow in early stage as Reynolds number is still in the range of 600-800. Pressure drop is high (2 bar) when fluid flows through the micro channel, and flux is constrained by the flow resistance during experiment operating. In this study, it takes effect by increasing aspect ratio to reduce pressure drop and enlarge the conductive surface. Geometry of microchannel, hydraulic diameter, and aspect ratio are the key factors in flow phenomena investigation. This research presents the difference between micro scale flow and traditional pipe flow by consideration of Reynolds number.rnBy using computer aided engineering to optimize the aspect ratio of microchannel, which can find the maximum conductive surface under the limitation of pressure drop. The best value of aspect ratio is 0.88-1.22. The simulation result makes good sequence with experiment data. Based on this methodology, numerical analysis can be used to design the optimal microchannel on wafer for cooling hot spot.
机译:MicroChannel散热器通过各向异性蚀刻在硅晶片上制造,并使用Pyrex#7740作为通过阳极键合集成的透明盖。矩形微通道以微观尺度呈现流体的流动现象,本研究着重于水力直径(D_h)为80μm至350μm,长宽比为0.24-7.8的工作流体(去离子水)的边界条件。当微通道的尺寸减小时,层流在低雷诺数下发生,这是由于边界层上的粘度和摩擦的相互作用引起的。因此,当雷诺数仍在600-800范围内时,尺寸减小对在初期引起过渡和湍流的微通道的影响。当流体流过微通道时,压降很高(2 bar),并且在实验操作过程中,通量受到流动阻力的限制。在这项研究中,它是通过增加长宽比来减少压降并扩大导电表面的效果。微通道的几何形状,水力直径和长宽比是流动现象研究的关键因素。本研究通过考虑雷诺数来揭示微尺度流量与传统管道流量之间的差异。通过使用计算机辅助工程来优化微通道的纵横比,可以在压降限制下找到最大的导电表面。长宽比的最佳值为0.88-1.22。仿真结果与实验数据吻合良好。基于这种方法,可以使用数值分析来设计晶片上用于冷却热点的最佳微通道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号