首页> 外文期刊>International Journal of Heat and Mass Transfer >3D Transient heat transfer analysis and flow visualization study in diverging microchannel for instability mitigated two-phase flow: A numerical study
【24h】

3D Transient heat transfer analysis and flow visualization study in diverging microchannel for instability mitigated two-phase flow: A numerical study

机译:瞬态传热分析和流动可视化研究在不稳定的微通道中的不稳定性两相流动:数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a 3D conjugate numerical simulation of the diverging microchannel heat sink, which is performed using the Volume of Fluid (VOF) model coupled with the phase change model. The modeling approach and simulation results are validated with standard correlations and published experimental results. The model is used to analyze the flow boiling and transient heat transfer mechanism through simulation of bubble nucleation, bubble growth pattern, pressure, temperature, and vapor quality variations. Moreover, local and transient Heat Transfer Coefficient (HTC) is calculated and then correlated with the simulated bubble dynamics. Herein, simulations are performed on the expanding microchannel with a varying outlet to inlet width ratio for uniform heat flux 150 kW/m~2 at two different mass fluxes 240 kg/m~2s and 710 kg/m~2s. Further, to understand the effect of wall contact angle, simulations are performed for two different values of wall contact angle of 140° and 65°. The results indicate that the channels with low divergence angle (θ) and low outlet to inlet width ratio (δ) have low nucleation time. Rapid bubble growth and elongated flow due to channel confinement were also observed. Higher values of the heat transfer coefficient are observed in the microchannels with small hydraulic diameter, and as the diameter is increased, a reduction in the HTC values is observed. The transient heat transfer coefficient fluctuation in the channel with time has been studied along with the corresponding flow pattern. Due to the smaller wall contact angle, the bubble separation rate from the wall is low, thereby creating localized hotspots. A comparative study between straight channel and diverging channel has showed that diverging microchannels have a better performance in terms of instability mitigated flow boiling. This study has considerable relevance in electronic chip cooling using expanding microchannel with instability mitigated two-phase flow.
机译:本文介绍了发散的微通道散热器的3D共轭数值模拟,其使用与相变模型耦合的流体(VOF)模型的体积进行。使用标准相关性和公开的实验结果验证了建模方法和仿真结果。该模型用于通过模拟气泡成核,气泡生长图案,压力,温度和蒸汽质量变化来分析流沸腾和瞬态传热机制。此外,计算局部和瞬态传热系数(HTC),然后与模拟气泡动力学相关。在此,在扩展微通道上进行模拟,其具有不同出口的进口宽度比在两种不同质量通量240kg / m〜2s和710kg / m〜2s的两个不同的热通量150kw / m〜2。此外,为了理解壁接触角的效果,对壁接触角的两个不同值的壁接触角的仿真进行了140°和65°。结果表明,具有低发散角(θ)和进气宽度比(δ)的通道具有低核切割时间。还观察到由于信道限制引起的快速泡沫生长和细长流动。在具有小液压直径的微通道中观察到较高值的传热系数,随着直径增加,观察到HTC值的减少。已经研究了通道中的瞬态传热系数波动与相应的流动模式一起研究。由于壁接触角越小,来自壁的泡沫分离率低,从而产生局部热点。直通道和发散通道之间​​的比较研究表明,发散的微通道在不稳定性减轻流动沸腾方面具有更好的性能。该研究在电子芯片冷却中具有相当大的相关性,使用膨胀微通道与不稳定性减轻的两相流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号