首页> 外文会议>Advanced fabrication technologies for microano optics and photonics VI >Micro-optical grayscale excitation lenses for atom and ion trapping
【24h】

Micro-optical grayscale excitation lenses for atom and ion trapping

机译:用于原子和离子捕获的微光学灰度激发透镜

获取原文
获取原文并翻译 | 示例

摘要

Designing and integrating micro-optical components into atom and ion traps are enabling steps toward miniaturizing trap dimensions in quantum computation applications. The micro-optic must have a high numerical aperture for precise illumination of the ion and should not introduce scatter. Due to the extreme optical efficiency requirements in trapped ion and atom-based quantum information processing, even slight losses from integrated micro-optics are detrimental. We have designed and fabricated aspheric micro-lenses through grayscale transfer into a fused silica in an effort to realize increased transmissive efficiency and decreased scatter compared to an equivalent diffractive optical element. The fabricated grayscale lens profile matched the desired lens profile well, and the measured and predicted optical performances were in good agreement. The pattern was transferred via coupled plasma reactive-ion etching smoothly into the fused silica with a RMS roughness ~ 35 nm. The micro-lens had a diameter of 88 um and 14.2 um sag, with an as-designed focal length of 149 um and spot diameter of 2.6 um. The maximum measured efficiency was ~80% (86% of theoretical, possibly due to rms roughness). This realized efficiency is superior to the equivalent diffractive lens efficiency, designed to the same use parameters. The grayscale approach demonstrated an increase in collection efficiency, at the desired optical focal length, providing the potential for further refinement.
机译:将微光学组件设计和集成到原子阱和离子阱中,使得在量子计算应用中朝着使阱尺寸最小化的步骤成为可能。微光学器件必须具有较高的数值孔径以精确照射离子,并且不得引入散射。由于在被困离子和基于原子的量子信息处理中对光学效率的要求极高,因此集成微光学的微小损失也是有害的。我们已经设计和制造了非球面微透镜,该透镜通过将灰度转移到熔融石英中来实现与等效衍射光学元件相比提高的透射效率和减小的散射。所制造的灰度透镜轮廓与所需的透镜轮廓非常匹配,并且测得的光学性能与预测的光学性能非常吻合。通过耦合等离子体反应离子刻蚀将图案平滑地转移到RMS粗糙度约为35 nm的熔融石英中。微透镜的直径为88微米,凹陷为14.2微米,设计焦距为149微米,光斑直径为2.6微米。最高测量效率为〜80%(理论值的86%,可能是由于均方根粗糙度)。该实现的效率优于针对相同使用参数设计的等效衍射透镜效率。灰度方法表明,在所需的光学焦距下,收集效率得到了提高,为进一步优化提供了可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号