首页> 外文会议>ACM international symposium on physical design 2010 >Physical Design Implementation for 3D IC – Methodology and Tools
【24h】

Physical Design Implementation for 3D IC – Methodology and Tools

机译:3D IC的物理设计实现–方法和工具

获取原文
获取原文并翻译 | 示例

摘要

3D IC extends interconnect technology across multiple chips,rnmultiple domains (digital, custom/RF, memory) and multiplerntechnology nodes. In addition to the heterogeneous systemrnintegration, 3D IC offers multiple types of configuration such asrn3D IC vertical stack, and silicon interposer. Another dimensionrnof 3D IC is the integration with package, that adds a largernnumber of configuration such as “embedded wafer level packagern= e-WLP” and “3D wafer level package”. All these types of 3DrnIC integration bring together multiple design system (digitalrndesign, custom/analog design, and package design). As such itrnwill require a team of designers with different expertise tornimplement an integrated system of 3D IC.rnThe focus of this invited talk is to explore 3D IC physicalrnmodeling, physical design methodology and physical designrntools. We have added infra-structure in the database, libraryrninterfaces and tools to allow the specification of 3D ICrnconfiguration and interconnect components. Both physicalrndesign tools and analysis tools have been enabled to support 3DrnIC design and analysis using the same modeling and infrastructure.rnWe have developed design methodology with earlyrn3D IC designers that allowed focusing on design flow that isrnoptimized for popular stacking styles.rn3D IC adds new physical components, which must be modeledrnand supported by physical design tools. TSV with backsidernmetal layers and micro-bump (cupper pillars) are examples ofrnthese components. The new components have design rulesrnassociated with them as well as design constraints. The designrnconstraints are added to avoid mechanical stress associated withrnTSV and substrate thinning. Physical design tools such asrnplacement and routing have been enabled to allow the user tornapply these components during the different stages of thernphysical design flow. These enhancements allow the designer tornmaintain the investment in IC tools that are being used andrnapply 3D IC features and design flow in an efficient manner.rnFormal specification is developed to allow the description of 3DrnIC stack configuration and also to describe the types ofrnsignals/power that go through the stack. Both the vertical 3D ICrnstacks and silicon interposer are well supported. In addition tornmanaging the stack, the designer has also the capability to dornearly planning for special signals and power that should traversernthe stack in a shortest distance. High speed signals are examplesrnof those special signals.rnEarly floorplanning is one of the strength of EDI system thatrnallows the designer/design team to plan and implement any 3DrnIC connectivity with new patterns and/or pre-defined patternsrn(TSV and micro-bumps). We have developed several designrnmethodologies to guide the designer during the planning,rnplacement and routing stages. In every design tape-out we haverndone so far, there are usually several signals and power thatrnmust be pre-defined and put in special location on each chip. Wernhave developed automated features allow the placement andrnrouting of TSV and micro-bump in any user defined pattern. Inrnmany cases, the assignment of signals is usually dictated byrnpackage/board design and provides assignment constraints thatrnmust be propagated through the entire stack.rnIn summary, the talk will provide the basic modeling features ofrn3D IC to allow the specification and the integration of multiplernchips in either vertical stack or silicon interposer. Then thernsecond part of the talk is to focus on placement and routing ofrnthe 3D IC interconnect components and how those are integratedrnin a design flow.
机译:3D IC将互连技术扩展到多个芯片,多个域(数字,定制/ RF,存储器)和多个技术节点。除了异构系统集成之外,3D IC还提供多种类型的配置,例如3D IC垂直堆栈和硅中介层。 3D IC的另一个尺寸是与封装的集成,增加了更多的配置,例如“嵌入式晶圆级封装= e-WLP”和“ 3D晶圆级封装”。所有这些类型的3DrnIC集成都将多个设计系统(数字设计,定制/模拟设计和封装设计)整合在一起。因此,这将需要一支具有不同专业知识的设计师团队来实现3D IC集成系统。本受邀演讲的重点是探索3D IC物理建模,物理设计方法和物理设计工具。我们在数据库,库接口和工具中添加了基础结构,以允许指定3D ICrn配置和互连组件。物理设计工具和分析工具均已启用,可以使用相同的建模和基础结构来支持3DrnIC设计和分析。rn我们已经与早期的3D IC设计人员一起开发了设计方法,可以专注于针对流行的堆叠样式进行了优化的设计流程。3dIC添加了新的物理组件,必须通过物理设计工具进行建模并提供支持。具有背面金属层和微型凸块(杯形支柱)的TSV是这些组件的示例。新组件具有与之关联的设计规则以及设计约束。添加了设计约束,以避免与TSV和基板变薄相关的机械应力。已经启用了物理设计工具(如放置和布线),以允许用户在物理设计流程的不同阶段中应用这些组件。这些增强功能使设计人员可以保留对正在使用的IC工具的投资,并以有效的方式应用3D IC功能和设计流程。rn制定了正式规范,以描述3DrnIC堆栈配置,并描述可以使用的3D信号/功率的类型。通过堆栈。垂直3D ICrnstack和硅中介层均得到良好的支持。除了管理堆栈外,设计人员还可以提前计划应在最短距离内穿过堆栈的特殊信号和电源。高速信号就是那些特殊信号的示例。早期的平面规划是EDI系统的强项之一,它使设计人员/设计团队无法计划和实施任何具有新模式和/或预定义模式(TSV和微型凸点)的3DrnIC连接。我们已经开发了几种设计方法,以在规划,布置和布线阶段指导设计人员。到目前为止,在我们尚未完成的所有设计工作中,通常都需要预先定义几个信号和功率,并将它们放置在每个芯片上的特殊位置。 Wernhave开发的自动化功能允许以任何用户定义的模式放置和布线TSV和微型凸点。在许多情况下,信号的分配通常由封装/电路板设计决定,并提供必须在整个堆栈中传播的分配约束。总而言之,本演讲将提供3D IC的基本建模功能,以允许规范或集成多个芯片垂直堆叠或硅中介层。然后,演讲的第二部分将重点放在3D IC互连组件的放置和布线以及如何将它们集成到设计流程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号