首页> 外文会议>Abstracts IEEE International Conference on Plasma Science >Study of low-temperature plasma development utilizing a GPU-implemented 3D PIC/MCC simulation
【24h】

Study of low-temperature plasma development utilizing a GPU-implemented 3D PIC/MCC simulation

机译:利用GPU实现的3D PIC / MCC仿真研究低温等离子体的发展

获取原文

摘要

A GPU-accelerated 3-dimensional PIC/MCC simulation code was developed using the CUDA environment to study the physical processes involved in the development of a low-temperature plasma. The simulation results aid in quantifying transient plasma development as it is often inaccessible experimentally in detail even with modern noninvasive techniques such as non-linear laser spectroscopy or high-speed electrical diagnostics. Hence, computational methods, such as Particle-in-Cell (PIC) and Monte Carlo Collision (MCC), provide a complementary approach to determining the mechanisms leading to plasma development. However, fully modeling the physics of the plasma development is made difficult by the number of plasma processes that must be tracked simultaneously, and only recently have computing resources provided the capability to track tens of millions of particle interactions. Furthermore, the introduction of graphics processing unit (GPU) computing provides an attractive means for economical and efficient parallelization of scientific codes through a framework such as NVIDIA CUDA. As such, a GPU-accelerated 3-dimensional PIC/MCC simulation was developed using the CUDA environment to provide characteristics during the initial stage of plasma development in atmospheric pressure nitrogen. The simulation was run on a NVIDIA GTX 580 with 3 GB of memory and 512 CUDA cores. The simulated geometry consists of two paraboloid electrodes with a gap distance of 5 millimeters with Dirichlet boundary conditions, and 22 unique electron interactions with molecular nitrogen are considered. The electrodes are excited with a step voltage pulse of several thousand volts also assuming a uniformly distributed initial electron density of 10
机译:使用CUDA环境开发了GPU加速的3维PIC / MCC仿真代码,以研究低温等离子体开发中涉及的物理过程。仿真结果有助于量化瞬态等离子体的发展,因为即使使用现代非侵入性技术(例如非线性激光光谱或高速电诊断),通常也无法通过实验来详细了解瞬态等离子体的发展。因此,诸如细胞内颗粒(PIC)和蒙特卡洛碰撞(MCC)之类的计算方法为确定导致等离子体发展的机制提供了一种补充方法。但是,由于必须同时跟踪等离子过程的数量,因此很难对等离子发展的物理过程进行完全建模,而且直到最近,计算资源才具有跟踪数千万个粒子相互作用的能力。此外,图形处理单元(GPU)计算的引入为通过NVIDIA CUDA之类的框架对科学代码进行经济有效的并行化提供了一种有吸引力的方法。因此,使用CUDA环境开发了GPU加速的3维PIC / MCC仿真,以在大气压氮气下等离子体发展的初始阶段提供特性。该模拟在具有3 GB内存和512个CUDA内核的NVIDIA GTX 580上运行。模拟的几何结构由两个抛物面电极组成,它们之间的间隙距离为5毫米,并具有Dirichlet边界条件,并考虑了22个与分子氮的独特电子相互作用。假设电极的初始电子密度均匀分布为10,则用几千伏的阶跃电压脉冲激励电极

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号