首页> 外文会议>8th Numerical Towing Tank Symposium >A Procedure for Optimizing Cavitating Propeller Blades in a Given Wake
【24h】

A Procedure for Optimizing Cavitating Propeller Blades in a Given Wake

机译:在给定的尾流中优化空化螺旋桨叶片的过程

获取原文
获取原文并翻译 | 示例

摘要

With more understanding and research on the prediction of propeller performance, it is natural for propeller designers to try to find an optimum design propeller. This problem was addressed already by Betz in 1919. Glauert combined the momentum theory and blade element theory for predicting and optimizing the efficiency of a propeller. Adkins et al extended Glauert's propeller theory by eliminating the light loading and small angle assumptions in the optimization design theory and calculated the vortex displacement velocity accurately. De Jong carried out an optimization including the viscosity effects of ship propellers with end plates. Rizk developed a scheme to update design parameters and flow variables iteratively. The accuracy, efficiency and sensitivity of the computational parameters were tested with a single equality constraint. It is possible to extend this method to solve more general optimization problems with more constraints, even of the inequality types. Triantafyllou formulated a preliminary B-series design process considering the interaction of engine, hull, wake and propeller, the fuel consumption being the optimization objective. The blade number, expanded area ratio and advance coefficient were investigated. A similar but more recent method for propeller optimization is presented by Benini. In this research a multi-objective evolutionary algorithm was used for preliminary design of a B-Screw propeller. Kinnas and Mishima applied a numerical optimization method for designing both partial and super-cavitating sections. The drag was minimized with given cavitation number and lift force. They coupled a numerical optimization technique with MPUF for the analysis and optimization of a cavitating propeller. The objective and constraints were expressed in terms of design parameters, which are movements of B-Spline control points. The method was applied on 2D partially and supercavitating hydrofoil sections, 3D propeller blades in uniform flow and cavitating blades in non-uniform flow.
机译:在对螺旋桨性能的预测有了更多的了解和研究之后,对于螺旋桨设计者来说,寻找一种最佳设计的螺旋桨是很自然的。贝茨(Betz)在1919年就已经解决了这个问题。格劳特(Glauert)将动量理论和叶片元素理论相结合来预测和优化螺旋桨的效率。 Adkins等人通过消除优化设计理论中的轻载和小角度假设,扩展了Glauert的螺旋桨理论,并精确计算了涡旋位移速度。 De Jong进行了优化,包括带有端板的船舶螺旋桨的粘度影响。 Rizk开发了一种方案来迭代更新设计参数和流量变量。计算参数的准确性,效率和敏感性在单个相等约束下进行了测试。可以扩展此方法,以解决更多约束甚至更不平等类型的更一般的优化问题。 Triantafyllou考虑到发动机,船体,尾流和螺旋桨的相互作用,制定了B系列的初步设计过程,而油耗是最优化的目标。研究了叶片数,扩展面积比和前进系数。贝尼尼提出了一种类似但较新的螺旋桨优化方法。在这项研究中,多目标进化算法用于B螺旋桨的初步设计。 Kinnas和Mishima应用了一种数值优化方法来设计局部和超空化截面。在给定的气穴数和升力的情况下,阻力被最小化。他们将数值优化技术与MPUF结合使用,以分析和优化空化螺旋桨。目的和约束条件是根据设计参数表示的,即B样条控制点的运动。该方法适用于2D部分和超空化水翼型材,均匀流动的3D螺旋桨叶片和非均匀流动的空化叶片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号