首页> 外文会议>7th ECI international conference on boiling heat transfer 2009 >COOLING TECHNIQUE BASED ON EVAPORATION OF THIN LIQUID FILMS IN MICROGAP CHANNELS
【24h】

COOLING TECHNIQUE BASED ON EVAPORATION OF THIN LIQUID FILMS IN MICROGAP CHANNELS

机译:基于微间隙通道薄液膜蒸发的冷却技术

获取原文
获取原文并翻译 | 示例

摘要

The forced flow of dielectric liquids, undergoing phase change while flowing in a narrow channel, is a promising candidate for the thermal management of advanced semiconductor devices in terrestrial and space applications. Such channels may be created by the spacing between silicon ribs in a microchannel cooler, between stacked silicon chips in a three-dimensional logic or heterogeneous microsystem, narrowly-spaced organic or ceramic substrates, and between a chip and a non-silicon polymer cover in a microgap cooler. These microgap configurations provide direct contact - and hence cooling - between a chemically-inert, dielectric liquid and the back surface of an active electronic component, thus eliminating the significant thermal resistance associated with a thermal interface material or the solid-solid contact resulting from the attachment of a microchannel coldplate to the chip. While direct contact cooling is thermally very efficient, in such configurations, it is the poorly understood two-phase flow phenomena that establish the upper bound on the heat removal capability. A detailed map of the flow sub-regimes in the stratified thin film flow of FC-72 liquid and nitrogen gas has been obtained for 2 mm flat mini-channel operating at room temperature. For shear-driven liquid films the critical heat flux is up to 10 times higher than that for a falling liquid film, which makes shear driven films (annular two-phase flow) more suitable for cooling applications than falling liquid films.
机译:介电液体的强制流动在窄通道中流动时会发生相变,是地面和太空应用中先进半导体器件热管理的有希望的候选者。可以通过微通道冷却器中的硅肋之间的间距,三维逻辑或异质微系统中的堆叠硅芯片之间,间距狭窄的有机或陶瓷基板之间以及芯片与非硅聚合物覆盖层之间的间距来创建此类通道。微间隙冷却器。这些微间隙配置可在化学惰性介电液体和活性电子元件的背面之间提供直接接触,从而实现冷却,从而消除了与热界面材料或由固相接触导致的固-固接触相关的显着热阻。将微通道冷却板连接至芯片。虽然直接接触冷却在热方面非常有效,但在这种配置中,人们对两相流现象的了解很少,这在排热能力上确立了上限。对于在室温下运行的2 mm扁平微型通道,已获得了FC-72液体和氮气的分层薄膜流中的流动子区域的详细映射。对于剪切驱动的液膜,临界热通量比下降的液膜高10倍,这使得剪切驱动的膜(环形两相流)比下降的液膜更适合冷却应用。

著录项

  • 来源
  • 会议地点 Florianopolis(BR);Florianopolis(BR)
  • 作者

    Kabov O.A.; Bar-Cohen A.;

  • 作者单位

    Universite Libre de Bruxelles, Chimie-Physique EP-CP165/62, Microgravity Research Center, Avenue F.D.Roosevelt 50, Bruxelles, B-1050, Belgium Institute of Thermophysics, Russian Academy of Sciences, Lavrentyev 1, Novosibirsk, 630090 Russia;

    University of Maryland, Department of Mechanical Engineering, College Park, TherPES Laboratory, MD 20742;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TK414.212;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号