首页> 外文会议>6th Specialty Conference on Vapor Intrusion 2012 >Sustainable Approaches for Soil Gas Mitigation Systems
【24h】

Sustainable Approaches for Soil Gas Mitigation Systems

机译:减少土壤气体系统的可持续方法

获取原文
获取原文并翻译 | 示例

摘要

Soil gas mitigation is increasingly considered as a pre-emptive strategy at sites impacted with volatile contaminants, radon or naturally-occurring biogenic gases (e.g., methane). For new building construction, there is a range of possible mitigation solutions, which often involve modification of the building envelope in contact with soil to incorporate soil gas venting and/or barrier systems. New approaches are emerging; however, there is limited knowledge and guidance on the design and effectiveness of such measures. This paper focuses on sustainable approaches for soil gas mitigation where aerated sub-floors are used in conjunction with semi-passive (wind turbine) or low-power fans. Aerated sub-floors are much more permeable than gravel layers, and thus are more efficient in term of venting characteristics. Scoping calculations based on civil engineering principles are presented for evaluating the influence of wind forces and the stack effect on venting performance and show that even small frictional losses significantly reduce airflow rates. Because the frictional losses in aerated sub-floors are small, there is significant benefit in use of such systems. To illustrate the effect of venting on vapour intrusion, results are presented for a modified version of the Johnson and Ettinger model that uses semi-analytical mass balance calculations to quantify the reduction in the vapour attenuation factor achieved by venting of a sub-building layer. The air flow calculations, frictional loss calculations, and modified Johnson and Ettinger model represent an improved framework for quantitative analysis of sustainable mitigation options. The paper concludes describing three case study sites where soil gas mitigation systems utilizing aerated sub-floors were installed where volatile organic compounds (e.g., chlorinated solvents or petroleum hydrocarbons) were of potential concern. Building sizes varied from 18,800 to 95,600 sq ft. Performance testing was completed at each site for the purpose of determining the number and size of fans required to provide effective ventilation and to confirm that subslab depressurization was sufficient to overcome variations in building depressurization resulting from changes in weather and building operation. The performance testing indicated that the aerated sub-floors at all three sites could be ventilated using low-power radon fans. For wind turbines, the model calculations and limited testing indicated limited venting efficiency, although the efficiency may be improved through the use of aerated sub-floors and the adoption of design practices to minimize pipes frictional losses.
机译:在受到挥发性污染物,ra或自然存在的生物气(例如甲烷)影响的地点,减少土壤气体被越来越多地视为优先考虑的策略。对于新建建筑,存在一系列可能的缓解解决方案,这些解决方案通常涉及修改与土壤接触的建筑物围护结构,以结合使用土壤气体排放和/或屏障系统。新方法正在出现;但是,关于此类措施的设计和有效性的知识和指导有限。本文着重介绍了可持续的土壤气体缓解方法,其中将充气地下地板与半被动式(风力涡轮机)或低功率风扇结合使用。加气的底层比砾石层具有更高的渗透性,因此在通风特性方面更为有效。提出了基于土木工程原理的范围计算,以评估风力和烟囱效应对通风性能的影响,并显示即使很小的摩擦损失也会显着降低气流速率。由于充气地板的摩擦损失很小,因此使用此类系统具有明显的优势。为了说明排气对蒸汽侵入的影响,给出了Johnson和Ettinger模型的修改版本的结果,该模型使用半分析质量平衡计算来量化通过子建筑层排气实现的蒸汽衰减因子的降低。空气流量计算,摩擦损失计算以及经改进的Johnson和Ettinger模型代表了一种用于可持续性缓解方案定量分析的改进框架。本文的结论是描述了三个案例研究地点,在这些地点安装了使用充气底层地板的土壤气体缓解系统,其中挥发性有机化合物(例如氯化溶剂或石油碳氢化合物)可能引起关注。建筑物的大小从18,800到95,600平方英尺不等。每个站点都完成了性能测试,目的是确定提供有效通风所需的风扇数量和大小,并确认底板的降压足以克服变化引起的建筑物降压的变化。在天气和建筑运营中。性能测试表明,可以使用低功率ra风扇为所有三个位置的充气地板通风。对于风力涡轮机,模型计算和有限的测试表明排气效率受到限制,尽管可以通过使用充气底层地板和采用设计方法来最大程度地减少管道的摩擦损失来提高效率。

著录项

  • 来源
  • 会议地点 Denver CO(US)
  • 作者

    Ian Hers; Eric Hood;

  • 作者单位

    Golder Associates Ltd., #500-4260 Still Creek Drive, Burnaby, BC V5C 6C6;

    Golder Associates Ltd., 100 Scotia Court, Whitby, ON L1N 8Y6;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:19:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号