【24h】

Dynamic Simulation of Vehicle Suspension Systems for Durability Analysis

机译:用于耐久性分析的车辆悬架系统的动态仿真

获取原文
获取原文并翻译 | 示例

摘要

Optimisation for fatigue life is currently carried out manually, which is time consuming and may not achieve the best design. To shorten the design process, software for automated durability optimisation is being developed at the University of Leeds and is initially aimed at the automotive industry. A key aspect of the optimisation process is to obtain accurate load histories for the particular component to be optimised. If this is to be done early in the design process, before a rolling chassis prototype is available, then simulation must be relied upon to obtain these load histories. In the case of suspension components either a quarter vehicle model (QVM) or a full vehicle model (FVM) can be used as the basis for the multi-body system (MBS) simulation. This paper compares the suitability of the QVM and FVM for durability analysis. Results are presented for both a simplified vehicle suspension and for a more realistic suspension. Step inputs representing a kerb and a simplified pothole were applied to one wheel only. For the simplified suspension case, the local displacement of the body was less for the FVM than for the QVM. This indicates that the dynamic response at the other wheel stations contributes to the behaviour of the wheel station directly subjected to the step or pothole input. The study was repeated with a more realistic suspension model in the QVM and at one wheel station of the FVM, with similar results to the simplified suspension case. This study has shown that coupling exists between the four wheel stations of the FVM even when the suspension is independent. This coupling can affect the load histories applied to a particular suspension component, which may then affect its calculated durability. The strength of this coupling is such that the use of the QVM for durability analysis becomes questionable and the FVM should be used as the default.
机译:当前,疲劳寿命的优化是手动进行的,这很耗时,并且可能无法达到最佳设计。为了缩短设计过程,利兹大学正在开发用于自动耐久性优化的软件,最初是针对汽车行业的。优化过程的关键方面是为要优化的特定组件获取准确的负载历史记录。如果要在设计过程的早期完成此工作,则在获得滚动底盘原型之前,必须依靠仿真来获得这些载荷历史记录。对于悬架组件,可以使用四分之一车辆模型(QVM)或完整车辆模型(FVM)作为多体系统(MBS)仿真的基础。本文比较了QVM和FVM在耐久性分析中的适用性。给出了简化的车辆悬架和更实际的悬架的结果。代表路缘石和简化坑洞的阶跃输入仅应用于一个车轮。对于简化的悬架情况,FVM的车身局部位移小于QVM。这表明在其他轮站处的动态响应会直接影响阶跃或坑洼输入的轮站行为。在QVM和FVM的一个车轮站上使用更逼真的悬架模型重复了该研究,结果与简化的悬架案例相似。这项研究表明,即使悬架是独立的,FVM的四个车轮站之间也存在耦合。这种耦合会影响施加到特定悬架部件上的载荷历史,进而影响其计算出的耐久性。这种耦合的强度使得使用QVM进行耐久性分析变得令人怀疑,并且应将FVM用作默认值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号