首页> 外文会议>4th international conference on microanoscale heat and mass transfer 2013 : Microanofluidics and Lab-on-a-chip ... >ANALYSIS OF TRIANGULAR MICROCHANNEL UNDER FORCED CONVECTION HEAT TRANSFER CONDITION FOR LAMINAR FLOW CONDITION
【24h】

ANALYSIS OF TRIANGULAR MICROCHANNEL UNDER FORCED CONVECTION HEAT TRANSFER CONDITION FOR LAMINAR FLOW CONDITION

机译:层流条件下强迫对流换热条件下的三角形微通道分析

获取原文
获取原文并翻译 | 示例

摘要

Micro-convection is a strategic area in transport phenomena, since it is the basis for a wide range of miniaturized high-performance heat transfer applications. Surface area is one of the important parameter for high flux heat transfer in microchannel performance. This experimental study deals with heat transfer using triangular microchannel having hydraulic diameters of 321 μm and 289μm. Experimentation is carried out for triangular microchannel set for different heat input and flow rate condition. Triangular microchannel are manufactured with EDM technology. Testing of microchannel under laminar flow is considered with different tip angle, spacing, and length of microchannels. The different microchannels made up of copper material with 29 microchannel each having three different sets of length of 50 mm, 70 mm and 90 mm respectively. Tip angles for triangular microchannel is varied 50 ° and 60 ° with width of 30 mm each respectively are analyzed numerically. Spacing between triangular microchannels is also varied and 300μm and 400μm are considered for the analysis. Water flow rate is considered laminar flow. The flow rate of water is varied from 0.0167 kg/sec to 0.167 kg/sce to carry away heat .It is observed that as hydraulic diameters increase the heat transfer coefficient decreases. As the heat input to microchannel increases from 10 Watt to 100 Watt the temperature drop across varies from 2℃ to 22℃ as water flow rate increases. The numerical analysis is done using computer C programming. Experimental result differ from theoretical for temperature drop with variation of 2℃ to 5℃. It is also observed that in all triangular microchannels its geometry i.e. tip angle and hydraulic diameter are dominant parameters which influences on rate of heat transfer. With increasing channel depth, increases flow passage area therefore enhances heat transfer sufficiently. From experimentation a Nu number correlation is proposed with considering tip angle, length, spacing of microchannel and other related parameters.
机译:微对流是传输现象的战略领域,因为它是各种小型化高性能传热应用的基础。表面积是微通道性能中高通量传热的重要参数之一。该实验研究涉及使用水力直径为321μm和289μm的三角形微通道进行传热。针对不同热输入和流量条件的三角形微通道装置进行了实验。三角形微通道采用EDM技术制造。考虑在层流下对微通道进行测试,需要考虑不同的尖端角度,间距和长度。由具有29个微通道的铜材料制成的不同微通道,每个微通道分别具有三组不同的长度,分别为50 mm,70 mm和90 mm。数值分析三角微通道的尖端角度分别为50°和60°,宽度分别为30 mm。三角形微通道之间的间距也有所不同,分析时考虑使用300μm和400μm。水流速被认为是层流。水的流量从0.0167千克/秒变化到0.167千克/秒以带走热量。可以观察到,随着水力直径的增加,传热系数降低。随着向微通道输入的热量从10瓦增加到100瓦,随着水流量的增加,温度降从2摄氏度变化到22摄氏度。数值分析是使用计算机C编程完成的。实验结果与理论值不同,温度下降幅度为2℃至5℃。还观察到,在所有三角形微通道中,其几何形状即顶角和水力直径是影响传热速率的主要参数。随着通道深度的增加,增加的流动通道面积因此充分增强了热传递。从实验中提出了考虑倒角,长度,微通道间距和其他相关参数的Nu数相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号