【24h】

ESTEC Guidance, Navigation, and Control activities for the Crew Return Vehicle (CRV)

机译:乘员返还车辆(CRV)的ESTEC制导,导航和控制活动

获取原文
获取原文并翻译 | 示例

摘要

The Crew Return Vehicle (CRV) is a spacecraft attached to the International Space Station (ISS) which will serve as a re-entry vehicle for astronauts on-board. The CRV will departure from its docking port of ISS and will reach a particular landing site on Earth previously specified. The goal of the paper is to describe the ESA/ESTEC activities concerning the design, development, and testing of a guidance, navigation, and spacecraft control for the CRV vehicle. The system is centered around the problem of are-entry vehicle, which carries astronauts on-board coming from a space station. The article starts with an introduction about the CRV spacecraft, the NASA and ESA plans and the different involvement of all partners in its construction. The paper continues with a description of the spacecraft on-board systems, including the six degrees of freedom control problem. The paper further explains that the future trajectory prediction is calculated by the ESA/University of Stuttgart optimal trajectory finder ALTOS, while the navigation and control sub-systems are computed in the ESA/TU-Delft trajectory re-entry simulator GESARED. Two different control techniques are detailed and briefly explored: model-based predictive control and fuzzy logic based control. Model based predictive control uses a model of the system to incorporate the knowledge of the predicted behavior of the spacecraft into the controller design cycle. This method of control design requires a model of the spacecraft to be controlled, a predictor equation, a known trajectory, and a cost function. An introduction about model-based predictive control techniques applied to spacecraft systems with six degrees of freedom control problems is given. The paper continues with a description of the mission chosen for the implementation explaining the various components of the control technique: the Newtonian system model used, the predictor equation, and the cost function. Fuzzy set theory was originally introduced by Prof. Zadeh in 1965. Since then, many researchers have introduced fuzzy logic (FL) techniques to solve different types of control problems. The ability to model problems in a simple and human-oriented way and the ability to produce smooth control actions around the set points make fuzzy logic an especially suitable candidate for use in space applications. Fuzzy logic seems to provide a method of reducing system complexity while maintaining control performance. Finally, the paper discusses the impact in the immediate applicability of the results of the work in the future ESA Crew Return Vehicle missions.
机译:乘员返回飞行器(CRV)是附属于国际空间站(ISS)的航天器,将作为机载宇航员的再入飞行器。 CRV将从其ISS停靠港出发,并到达先前指定的地球上的特定着陆点。本文的目的是描述ESA / ESTEC有关CRV载具的制导,导航和航天器控制的设计,开发和测试的活动。该系统围绕着进入式飞行器的问题而集中,这种飞行器携带着来自空间站的机载宇航员。本文首先介绍了CRV航天器,NASA和ESA计划以及所有合作伙伴在其建造过程中的不同参与。本文继续介绍航天器的机载系统,包括六个自由度控制问题。本文进一步解释说,未来的轨迹预测是由ESA /斯图加特大学最优轨迹查找器ALTOS计算的,而导航和控制子系统是在ESA / TU-Delft轨迹重入模拟器GESARED中计算的。详细介绍了两种不同的控制技术:基于模型的预测控制和基于模糊逻辑的控制。基于模型的预测控制使用系统模型将航天器预测行为的知识纳入控制器设计周期。这种控制设计方法需要控制航天器的模型,预测器方程,已知轨迹和成本函数。介绍了基于模型的预测控制技术应用于具有六个自由度控制问题的航天器系统的情况。本文继续介绍了为实现目标而选择的任务,说明了控制技术的各个组成部分:所用的牛顿系统模型,预测变量和成本函数。模糊集理论最初是由Zadeh教授于1965年提出的。此后,许多研究人员引入了模糊逻辑(FL)技术来解决不同类型的控制问题。以简单且以人为本的方式对问题建模的能力以及在设定点附近产生平滑控制动作的能力使模糊逻辑成为空间应用中特别合适的候选对象。模糊逻辑似乎提供了一种在保持控制性能的同时降低系统复杂性的方法。最后,本文讨论了未来ESA机组人员返回车辆任务对工作结果的即时适用性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号