首页> 外文会议>Congress of the International Council of the Aeronautical Sciences;ICAS 2010 >AERODYNAMIC PERFORMANCE OPTIMIZATION OF A WIND TUNNEL MORPHING WING MODEL SUBJECT TO VARIOUS CRUISE FLOW CONDITIONS
【24h】

AERODYNAMIC PERFORMANCE OPTIMIZATION OF A WIND TUNNEL MORPHING WING MODEL SUBJECT TO VARIOUS CRUISE FLOW CONDITIONS

机译:各种巡航流量条件下风洞变形机翼模型的气动性能优化

获取原文
获取原文并翻译 | 示例

摘要

A large-scale multi-disciplinary researchrnproject, CRIAQ 7.1, was undertaken torninvestigate a morphing wing concept forrnaircraft aerodynamic performance improvementrnover various flow conditions. The collaboratorsrnwere Ecole de Technologie Supérieure ofrnMontreal (ETS), Ecole Polytechnique ofrnMontreal (EP), Bombardier Aerospace (BA),rnThales Avionic Inc. (Thales) and the NationalrnResearch Council of Canada (NRC). Thernproject was mainly funded by the Consortiumrnfor Research and Innovation in Aerospace inrnQuebec (CRIAQ). The main objective of thernmorphing concept was to reduce drag byrnimproving the extent of laminar flow on thernwing surfaces, by delaying transition toward therntrailing edge. The wing consisted of rigid andrnflexible parts, and smart material alloyrnactuators. The investigation was based onrnnumerical simulations and wind tunnel tests.rnThe simulations involved the wing-upperrnsurface shape optimization for various cruisernflow conditions, the design of the wing and itsrnmorphing skin, the design and development ofrnthe smart actuators, and the controllers.rnThree types of controllers were built,rnfollowing three approaches. The first controllerrnwas based on experimental pressure signal datarnrecorded on the wing morphing skin surface.rnThe second controller was supplied the wingrnaerodynamic loads (lift L and drag D). In thernthird controller, the transition location on thernwing, determined by infrared measurements,rnwas used as input. The three controllers'rnfunctionality was demonstrated during benchrntests, at ETS (wind off), and in the wind tunnelrn(wind off and on) at NRC. Their performancernand behavior seemed to differ but yieldedrnapproximately the same expected wingrnaerodynamic performance improvement. A 30%rnreduction in the wing drag was achieved. In thernpresent paper, the three controllers and theirrnoperability are discussed briefly, followed by arnthorough experimental validation of therncontrollers and wing shape optimizers. Also,rnwind tunnel data in terms of pressure signals,rnwing aerodynamic loads and infraredrnmeasurements are analysed for various flowrnconditions and optimal wing shapes. Emphasisrnis placed on the effect of the optimized wingrnshapes on the wing drag reduction. The resultsrnare presented in terms of measured andrncomputed pressure coefficient profiles, wingrnloads (drag and lift), controller performancernand optimizer efficiency.
机译:进行了一项大规模的多学科研究项目CRIAQ 7.1,以研究变形机翼概念,以改进飞机在各种流动条件下的空气动力性能。合作者是蒙特利尔高等技术学院(ETS),蒙特利尔高等理工学院(EP),庞巴迪宇航(BA),Thales Avionic Inc.(Thales)和加拿大国家研究委员会(NRC)。该项目主要由魁北克航空航天研究与创新联合会(CRIAQ)资助。热变形概念的主要目的是通过延迟向着后缘的过渡来改善翼面的层流程度来减少阻力。机翼由刚性和柔性部件以及智能材料合金致动器组成。该研究基于数值模拟和风洞试验。模拟包括针对各种巡航流动条件的机翼-上表面形状优化,机翼及其变形蒙皮的设计,智能执行器的设计和开发以及控制器。三种类型的控制器按照以下三种方法构建。第一个控制器是基于记录在机翼变形皮肤表面上的实验压力信号数据。第二个控制器被提供了机翼气动载荷(升力L和阻力D)。在第三控制器中,通过红外测量确定的在机翼上的过渡位置被用作输入。在NTS的ETS(关闭)和风洞(关闭和打开)的台架测试中展示了这三个控制器的功能。它们的性能和行为似乎有所不同,但是产生了与预期的机翼空气动力学性能改善大致相同的结果。机翼阻力降低了30%。在当前的论文中,简要讨论了这三种控制器及其可操作性,然后通过了对控制器和机翼形状优化器的充分实验验证。此外,还针对各种流动条件和最佳机翼形状,分析了压力信号,机翼气动载荷和红外测量方面的风洞数据。重点放在优化机翼形状对机翼减阻的影响上。结果以测量和计算的压力系数曲线,机翼载荷(阻力和升力),控制器性能和优化器效率的形式表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号