首页> 外文会议>26th Southern biomedical engineering conference >Optimization and Validation of a Biomechanical Model for Analyzing Running-Specific Prostheses
【24h】

Optimization and Validation of a Biomechanical Model for Analyzing Running-Specific Prostheses

机译:用于分析跑步假肢的生物力学模型的优化和验证

获取原文
获取原文并翻译 | 示例

摘要

Modeling the ankle joint during amputee locomotion is difficult since a definitive joint axis may not exist. Gait analysis estimates joint center positions and defines body segment motions by placing reflective markers on anatomical landmarks. Inverse dynamics techniques then estimate joint kinetics (forces and moments) and mechanical energy expenditure using data from ground reaction forces (GRFs) and the most distal joint (usually the ankle) to make calculations for proximal joints. Running-specific prostheses (RSPs) resemble a "C" or "L" shape rather than the human foot. This allows RSPs to flex and return more propulsive energy, like a spring, but no "ankle" exists. Current biomechanical models assume such a joint exists by placing markers arbitrarily on the RSP (e.g. the most acute point on the prosthesis curvature). These models are not validated and may produce large errors since inverse dynamics assumes rigid segments between markers but RSPs are designed to flex. Moreover, small errors in distal joint kinetics calculations will propagate up the chain and inflate errors at proximal joints. This study develops and validates a model for gait analysis with RSPs. Reflective markers were placed 1 cm apart along the lateral aspects of five different RSPs. Prostheses were aligned in a material testing system between two load cells. Forces simulating peak running loads were applied and the load cells measured forces and moments at the top (applied force) and bottom (GRF) of the prostheses. Inverse dynamics estimated force transfers from the bottom to top of the prostheses through the defined segments. Differences between estimated and applied values at the top are considered model error. Error will be calculated for every possible combination of markers to determine the minimal marker set with an "acceptable" level of error. The results yield a model that can be confidently used during gait analyses with RSPs.
机译:由于截肢者可能不存在确定的关节轴,因此很难在截肢者运动期间对踝关节进行建模。步态分析通过在解剖界标上放置反射标记来估计关节中心位置并定义身体的运动。然后,逆动力学技术使用地面反作用力(GRF)和最远端关节(通常是脚踝)的数据估算关节动力学(力和力矩)和机械能消耗,以计算近端关节。特定于跑步的假肢(RSP)呈“ C”或“ L”形,而不是人脚。这使RSP可以弯曲并返回更多的推进能量,就像弹簧一样,但是不存在“脚踝”。当前的生物力学模型通过在RSP上任意放置标记(例如,假体曲率上最锐利的点)来假设存在这样的关节。这些模型未经验证,可能会产生较大的误差,因为逆动力学假设标记之间存在刚性段,但RSP设计为可弯曲的。此外,远端关节动力学计算中的小误差将沿链条向上传播,并增大近端关节处的误差。本研究开发并验证了使用RSP进行步态分析的模型。反射标记沿五个不同RSP的侧面相距1 cm。假体在两个测力传感器之间的材料测试系统中对齐。施加模拟峰值运行载荷的力,测力传感器测量假体顶部(施加力)和底部(GRF)的力和力矩。逆动力学估计的力通过定义的段从假体的底部传递到假体。顶部的估计值与应用值之间的差异被视为模型误差。将为标记的每种可能组合计算误差,以确定具有“可接受的”误差水平的最小标记集。结果得出的模型可以在使用RSP进行步态分析时放心使用。

著录项

  • 来源
  • 会议地点 College Park MD(US);College Park MD(US)
  • 作者单位

    Department of Kinesiology, University of Maryland, College Park, MD USA;

    Department of Kinesiology, University of Maryland, College Park, MD USA;

    Department of Kinesiology, University of Maryland, College Park, MD USA;

    Department of Kinesiology, University of Maryland, College Park, MD USA;

    Department of Kinesiology, University of Maryland, College Park, MD USA,Department of Bioengineering, University of Maryland, College Park, MD USA,Neuroscience and Cognitive Science (NACS) Graduate Program, University of Maryland, College Park, MD USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物工程学(生物技术);
  • 关键词

    kinetics; amputee; amputation; prosthesis;

    机译:动力学;被截肢者截肢假肢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号