首页> 外文会议>2017 Cognitive Communications for Aerospace Applications Workshop >An experimental platform for multi-spacecraft phase-array communications
【24h】

An experimental platform for multi-spacecraft phase-array communications

机译:多航天器相控阵通信的实验平台

获取原文
获取原文并翻译 | 示例

摘要

The emergence of small satellites and CubeSats for interplanetary exploration will mean hundreds if not thousands of spacecraft exploring every corner of the solar-system. Current methods for communication and tracking of deep space probes use ground based systems such as the Deep Space Network (DSN). However, the increased communication demand will require radically new methods to ease communication congestion. Networks of communication relay satellites located at strategic locations such as geostationary orbit and Lagrange points are potential solutions. Instead of one large communication relay satellite, we could have scores of small satellites that utilize phase arrays to effectively operate as one large satellite. Excess payload capacity on rockets can be used to warehouse more small satellites in the communication network. The advantage of this network is that even if one or a few of the satellites are damaged or destroyed, the network still operates but with degraded performance. The satellite network would operate in a distributed architecture and some satellites maybe dynamically repurposed to split and communicate with multiple targets at once. The potential for this alternate communication architecture is significant, but this requires development of satellite formation flying and networking technologies. Our research has found neural-network control approaches such as the Artificial Neural Tissue can be effectively used to control multirobot/multi-spacecraft systems and can produce human competitive controllers. We have been developing a laboratory experiment platform called Athena to develop critical spacecraft control algorithms and cognitive communication methods. We briefly report on the development of the platform and our plans to gain insight into communication phase arrays for space.
机译:用于行星际探索的小型卫星和立方体卫星的出现将意味着数百甚至数千个航天器在探索太阳系的每个角落。当前用于深空探测器通信和跟踪的方法使用基于地面的系统,例如深空网络(DSN)。但是,不断增长的通信需求将需要从根本上采用新方法来缓解通信拥塞。位于战略位置(如地球静止轨道和Lagrange点)的通信中继卫星网络是潜在的解决方案。代替一枚大型通信中继卫星,我们可以拥有数十个利用相控阵有效地充当一枚大型卫星的小型卫星。火箭上的有效载荷容量过大可用于在通信网络中存储更多的小型卫星。该网络的优势在于,即使一颗或几颗卫星受到损坏或破坏,该网络仍可运行,但性能会下降。卫星网络将在分布式体系结构中运行,某些卫星可能会被动态地重新分配以一次分裂并与多个目标进行通信。这种替代通信架构的潜力是巨大的,但这需要开发卫星编队飞行和联网技术。我们的研究发现,诸如人工神经组织之类的神经网络控制方法可以有效地用于控制多机器人/多飞船系统,并可以生产出具有人类竞争力的控制器。我们一直在开发一个称为Athena的实验室实验平台,以开发关键的航天器控制算法和认知交流方法。我们简要报告了平台的发展情况以及我们计划以了解太空通信相阵列的计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号