首页> 外文会议>2015 Proceedings of the ASME 13th international conference on nanochannels, microchannels, and minichannels >MICROCHANNEL DESIGN STUDY FOR 3D MICROELECTRONICS COOLING USING A HYBRID ANALYTICAL AND FINITE ELEMENT METHOD
【24h】

MICROCHANNEL DESIGN STUDY FOR 3D MICROELECTRONICS COOLING USING A HYBRID ANALYTICAL AND FINITE ELEMENT METHOD

机译:基于混合分析和有限元方法的3D微电子冷却微通道设计研究

获取原文
获取原文并翻译 | 示例

摘要

For microelectronics cooling, microchannels are a potential solution to ensure reliability without sacrificing compactness, as they require relatively small space to remove high heat fluxes compared to air cooling. However, designing microchannels is a complex task where simulation models become a forefront tool to investigate and propose new solutions to increase the chip thermal performances with minimal impact on other aspects. This work evaluates numerically the impact of microchannel cooling in a standalone chip and a 3D assembly of two stacked chips with localized heat sources. To do so, a modeling approach was developed to combine finite element modeling of conduction in the chip using commercial software with analytical relations to capture the heat transfer and fluid flow in the microchannels. This approach leverages the multiphysics and post-processing capabilities of commercial software, but avoids the extensive discretization that would normally be required in microchannels with full finite element modeling. The study shows that increasing the flow rate is not as beneficial as increasing the number of channels (with constant total cross-section area). The effect of heat spreading was also found to be critical, favoring thicker dies. When switching to 3D chip configuration, the interdie underfill layer significantly increases the total thermal resistance and must be considered for thermal design. This effect can be significantly alleviated by increasing the interdie thermal conductivity through adding copper micropillars.
机译:对于微电子冷却,微通道是一种确保可靠性而又不牺牲紧凑性的潜在解决方案,因为与空气冷却相比,微通道需要相对较小的空间来去除高热通量。但是,设计微通道是一项复杂的任务,在仿真模型中,仿真模型成为研究和提出新解决方案的最前沿工具,可以在不影响其他方面的情况下提高芯片的热性能。这项工作在数值上评估了独立芯片和两个具有局部热源的堆叠芯片的3D组件中微通道冷却的影响。为此,开发了一种建模方法,以使用商业软件和分析关系来结合芯片中传导的有限元建模,以捕获微通道中的传热和流体流动。这种方法利用了商业软件的多物理场和后处理功能,但是避免了在具有完整有限元建模的微通道中通常需要的广泛离散化。研究表明,增加流速不如增加通道数量(总横截面面积不变)有益。还发现热扩散的影响至关重要,有利于较厚的模具。切换到3D芯片配置时,模间底部填充层会显着增加总热阻,因此在进行热设计时必须予以考虑。通过添加铜微柱来增加模间热导率,可以大大减轻这种影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号