首页> 外文会议>2015 Proceedings of the ASME 13th international conference on nanochannels, microchannels, and minichannels >MODELING OF A NON-PERIODIC BOUNDARY CONDITION WITH ENTRANCE AND EXIT IN DISSIPATIVE PARTICLE DYNAMICS
【24h】

MODELING OF A NON-PERIODIC BOUNDARY CONDITION WITH ENTRANCE AND EXIT IN DISSIPATIVE PARTICLE DYNAMICS

机译:耗散粒子动力学中具有入口和出口的非周期边界条件的建模

获取原文
获取原文并翻译 | 示例

摘要

Dissipative particle dynamics (DPD) have been widely used for the simulations of dynamics of both simple and complex fluids at nano/micro scales. In these simulations, periodic boundaries are usually employed in the main flow direction and the characterization of the flow and heat transfer is based on fully developed conditions. In the real nano/micro-fluidic devices, however, there are entrances and exits and the flow and temperature fields are not the same at different positions, making the periodic boundary conditions ill-suited due to problems with conservation of energy and momentum. This is the motivation of the present study to generate the non-periodic boundary condition having an entrance and an exit in the the DPD system and study the heat transfer characteristics in the entrance region. In this study, the entrance and exit regions are modelled for simulations of the flow in a parallel-plate channel based on the available methodology originally introduced for molecular dynamics. In this methodol- ogy, a body force acts on the DPD particles at the entrance region of the solution domain to generate the entrance region. This is region is so-called pump region. Also, a region to initiate the DPDe temperature was located followed by the pump region. Forced convection heat transfer of water flowing through a parallel-plate channel with constant wall temperature was simulated using this method. The simulations were implemented for different body forces in the pump region. The results were evaluated in terms of velocity, temperature and number density distributions in the channel and showed the effects of the compressibility of the DPD fluid and random movement (or Brownian motion). In addition, the Reynolds and Nusselt numbers were calculated to investigate their effects on the heat transfer characteristics at the entrance region.
机译:耗散粒子动力学(DPD)已被广泛用于在纳米/微米尺度上模拟简单和复杂流体的动力学。在这些模拟中,通常在主流动方向上采用周期性边界,流动和传热的表征基于充分发展的条件。然而,在实际的纳米/微流体装置中,存在入口和出口,并且在不同位置处的流场和温度场不相同,由于能量和动量守恒的问题,使得周期性边界条件不合适。这是本研究的动机,以在DPD系统中生成具有入口和出口的非周期性边界条件,并研究入口区域的传热特性。在这项研究中,基于最初为分子动力学引入的可用方法,对入口和出口区域进行了建模,以模拟平行板通道中的流动。在这种方法中,体力作用在溶液域入口区域的DPD颗粒上,从而产生入口区域。这是所谓的泵区域。另外,在泵浦区域之后设置了引发DPDe温度的区域。使用这种方法模拟了在恒定壁温下流经平行板通道的水的强迫对流传热。针对泵区域中的不同体力执行了仿真。根据通道中的速度,温度和数量密度分布评估了结果,并显示了DPD流体的可压缩性和随机运动(或布朗运动)的影响。此外,还计算了雷诺数和努塞尔数,以研究它们对入口区域传热特性的影响。

著录项

  • 来源
  • 会议地点 Sun Francisco CA(US);San Francisco CA(US)
  • 作者单位

    Division of Heat Transfer Department of Energy Sciences Lund University P.O. Box 118 S-221 00, Lund, Sweden;

    Division of Heat Transfer Department of Energy Sciences Lund University P.O. Box 118 S-221 00, Lund, Sweden;

    Division of Heat Transfer Department of Energy Sciences Lund University P.O. Box 118 S-221 00, Lund, Sweden;

    Division of Heat Transfer Department of Energy Sciences Lund University P.O. Box 118 S-221 00, Lund, Sweden;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:27:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号