首页> 外文会议>2015 IEEE Magnetics Conference >Modulation the phase of propagating spin wave in waveguide by spin-polarized current
【24h】

Modulation the phase of propagating spin wave in waveguide by spin-polarized current

机译:自旋极化电流调制波导中自旋波的相位

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on waveguide, whose schematic is shown in Figure 1(a) . The length, width and thickness of stripe are L= 1500nm, w=40nm, h=5nm . A thin nonmagnetic spacer is placed between the magnetic stripe and pinned magnetic layer with width wp = 10nm . Applied DC current is polarized through the pinned magnetic layer . The direction of spin-polarized current is perpendicular to the film of magnetic stripe . An external magnetic field is applied along the x-axis . An AC field is applied parallel to the z-axis to excite backward-volume spin waves . The dispersions of spin waves in the waveguide were simulated by micromagnetic package OOMMF, using the Landau-Lifshitz-Gilbet (LLG) equation with the Slonczewski-Berger spin torque term . A series of spin-polarized current with different densities were applied through the magnetic stripe . The simulation results are shown in Figure 1(b) . We can see that the phase shift increases with the increasing of spin-polarized current in a certain range . The phase shift can reach about 0 .3π when spin-polarized current density is 12 .5×10A/m. When three pinned magnetic layers are fabricated under the magnetic stripe, a phase shift of about π can be reached . The ways can be used in a Mach-Zender-type interferometer to fulfill logic NOT gates, the interference results of spin waves are shown in Figure 2 .
机译:在这项工作中,我们提出了一种通过在波导上施加局部自旋极化电流来控制传播自旋波相移的新方法,其示意图如图1(a)所示。条纹的长度,宽度和厚度为L = 1500nm,w = 40nm,h = 5nm。将薄的非磁性间隔物放在磁条和固定的磁性层之间,宽度wp = 10nm。施加的直流电流通过固定的磁性层极化。自旋极化电流的方向垂直于磁条薄膜。沿x轴施加了外部磁场。平行于z轴施加一个交流场以激发后向体积的自旋波。使用Landau-Lifshitz-Gilbet(LLG)方程和Slonczewski-Berger自旋扭矩项,通过微磁封装OOMMF模拟了波导中自旋波的色散。通过磁条施加了一系列不同密度的自旋极化电流。仿真结果如图1(b)所示。我们可以看到,在一定范围内,相移随着自旋极化电流的增加而增加。当自旋极化电流密度为12 .5×10A / m时,相移可达到约0.3π。当在磁条下面制造三个固定的磁性层时,可以达到大约π的相移。这些方法可用于马赫-曾德(Mach-Zender)型干涉仪中以实现逻辑非门,自旋波的干涉结果如图2所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号