【24h】

Metamaterials - From new concepts to applications

机译:超材料-从新概念到应用

获取原文
获取原文并翻译 | 示例

摘要

For a long time, the natural materials have been classified into two types: crystals and noncrys-tals, until Daniel Shechtman discovered quasicrystals in 1982, who won the Nobel chemistry prize in 2011 for this work. In fact, crystals and noncrystals are composed of periodically-distributed and randomly-distributed atoms, while quasicrystals have a third material state between crystals and noncrystals: which are non-periodic structures of atoms with certain rules instead of random. Hence the two factors to affect natural material properties are the atoms themselves and the spatial arrangements of atoms. Quasicrystals have brought a lot of new features of materials and found applications in steel armour, non-stick frying pans, and devices in cars for recycling waste heat into electricity. However, it is very hard to control atoms themselves and their spatial arrangements to get more material properties. Metamaterials provide us a freedom to tailor the material properties, both for electric and magnetic. Metamaterials are composed of periodic or non-periodic structures of artificial “atoms” or “particles”, which have a size of subwavelength scale. The flexible design of single artificial particles, the feasible arrangements of such particles, and the high anisotropy make it possible to control the material properties as desired: metamaterials can be used to realize the effective permittivity and/or permeability which cannot be achieved in nature. Hence they have either unique features with unusual physical phenomena (such as negative refraction, invisibility cloak, optical illusion, etc.) or superior performance than the natural materials. In this talk, I will focus on microwave metamaterials and introduce their counterparts to crystals, noncrystals, and quasicrystals: homogeneous metamaterials, random metamaterials, and inhomogeneous metamaterials. For all three cases, I will introduce the new concepts and important experiments and ap- lications in microwave frequencies conducted in my group, including the invisibility cloaks, electromagnetic black hole, radar illusion devices, power combination for omnidirectional radiations, planar gradient-index lenses, flattened Luneburg lens, Maxwell fisheye lens, high-gain Vivaldi antennas, and decoupling device for MIMO system.
机译:长期以来,天然材料被分为晶体和非晶体两种类型,直到丹尼尔·谢赫特曼(Daniel Shechtman)于1982年发现了准晶体,并因这项工作而在2011年获得了诺贝尔化学奖。实际上,晶体和非晶体由周期性分布和随机分布的原子组成,而准晶体在晶体和非晶体之间具有第三种物质状态:这是具有一定规则而非随机的原子的非周期性结构。因此,影响自然材料特性的两个因素是原子本身和原子的空间排列。准晶体带来了材料的许多新特性,并在钢制铠甲,不粘煎锅和汽车废热回收利用设备中得到了应用。但是,很难控制原子本身及其空间排列以获得更多的材料特性。超材料为我们提供了自由定制电气和磁性材料属性的自由。超材料由人造“原子”或“粒子”的周期性或非周期性结构组成,其大小为亚波长尺度。单个人造颗粒的灵活设计,此类颗粒的可行排列以及较高的各向异性使得可以根据需要控制材料性能:超材料可用于实现自然界无法实现的有效介电常数和/或磁导率。因此,它们具有与众不同的物理现象的独特特征(例如负折射,隐形斗篷,光学错觉等)或比天然材料优越的性能。在本次演讲中,我将重点介绍微波超材料,并将它们的对应物介绍给晶体,非晶体和准晶体:同质超材料,随机超材料和非均质超材料。对于这三种情况,我将介绍小组中微波频率的新概念以及重要的实验和应用,包括隐形斗篷,电磁黑洞,雷达错觉装置,用于全向辐射的功率组合,平面梯度折射率透镜,扁平的Luneburg镜头,Maxwell鱼眼镜头,高增益Vivaldi天线以及MIMO系统的去耦装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号