首页> 外文会议>2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. >Approximating the Expansion Profile and Almost Optimal Local Graph Clustering
【24h】

Approximating the Expansion Profile and Almost Optimal Local Graph Clustering

机译:逼近展开轮廓和最佳局部图聚类

获取原文
获取原文并翻译 | 示例

摘要

Spectral partitioning is a simple, nearly-linear time, algorithm to find sparse cuts, and the Cheeger inequalities provide a worst-case guarantee of the quality of the approximation found by the algorithm. Local graph partitioning algorithms [ST08, ACL06, AP09] run in time that is nearly linear in the size of the output set, and their approximation guarantee is worse than the guarantee provided by the Cheeger inequalities by a poly-logarithmic $log^{Omega(1)} n$ factor. It has been an open problem to design a local graph clustering algorithm with an approximation guarantee close to the guarantee of the Cheeger inequalities and with a running time nearly linear in the size of the output. In this paper we solve this problem, we design an algorithm with the same guarantee (up to a constant factor) as the Cheeger inequality, that runs in time slightly super linear in the size of the output. This is the first sub linear (in the size of the input) time algorithm with almost the same guarantee as the Cheeger's inequality. As a byproduct of our results, we prove a bicriteria approximation algorithm for the expansion profile of any graph. Let $mu(S)=sum_{vin S} d(v)$ be the volume, and $phi(S):=|E(S, over line{S})|/mu(S)$, be the conductance of a set $S$ of vertices. If there is a set of volume at most $gamma$ and conductance $phi$, we can find a set of volume at most $gamma^{1+eps}$ and conductance at most $O( sqrt{phi/eps} )$, for any $eps>0$. Our proof techniques also provide a simpler proof of the structural result of Arora, Barak, Steurer [ABS10], that can be applied to irregular graphs. Our main technical tool is a lemma stating that, for any set $S$ of vertices of a graph, a lazy $t$-step random walk started from a randomly chosen vertex of $S$, will remain entirely inside $S$ with probability at least $(1-phi(S)/2)^t$. The lemma also implies a new lower bound to the uniform mixing time of any finite states reversible markov chain.
机译:频谱划分是一种简单的,近似线性的时间算法,用于查找稀疏割,而Cheeger不等式为算法找到的近似质量提供了最坏的保证。局部图分区算法[ST08,ACL06,AP09]的运行时间与输出集的大小几乎呈线性关系,其逼近保证要比多对数$ log ^ {Omega所提供的Cheeger不等式所提供的保证差。 (1)} n $因子。设计具有接近于Cheeger不等式的保证并且逼近输出大小的线性运行时间的局部图聚类算法是一个开放的问题。在本文中,我们解决了这个问题,我们设计了一种算法,该算法与Cheeger不等式具有相同的保证(最大恒定因数),该算法在时间上运行时输出大小略呈线性。这是第一个子线性(输入大小)时间算法,其保证与Cheeger不等式几乎相同。作为结果的副产品,我们证明了任何图的展开轮廓的双标准近似算法。假设$ mu(S)= sum_ {vin S} d(v)$为体积,而$ phi(S):= | E(S,在线{S})| / mu(S)$为一组顶点的电导率。如果存在一组最多$ gamma $和电导$ phi $的体积,我们可以找到一组最多$ gamma ^ {1 + eps} $和电导$ O(sqrt {phi / eps})的一组体积$,对于任何$ eps> 0 $。我们的证明技术还为Arora,Barak,Steurer [ABS10]的结构结果提供了更简单的证明,可以将其应用于不规则图形。我们的主要技术工具是一个引理,指出对于任何一组图的顶点$ S $,从$ S $的随机选择的顶点开始的惰性$ t $步随机游走将完全保留在$ S $内概率至少为$(1-phi(S)/ 2)^ t $。引理还暗示了任何有限状态可逆马尔可夫链的均匀混合时间的新下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号