首页> 外文会议>2012 Abstracts 39th IEEE International Conference on Plasma Science. >2D numerical simulation of capacitively coupled RF plasma shower device
【24h】

2D numerical simulation of capacitively coupled RF plasma shower device

机译:电容耦合射频等离子体喷淋装置的二维数值模拟

获取原文
获取原文并翻译 | 示例

摘要

A capacitively coupled RF discharge at atmospheric pressure is studied by means of a time-dependent, two-dimensional fluid model. The plasma is created in a stationary argon gas flow between two multi-holes perforated electrodes, forming a shower [1]. The inner electrode is powered with a frequency of 13.56 MHz, the outer electrode is grounded. The model solves the mass balance equations for the relevant active species and the electron energy balance equation in conjunction with the Poisson equation for the field sustaining the plasma. The mass balance equations of the active species are calculated using the drift-diffusion-convection approach, thus taking the bulk velocity into account. The velocity field is calculated with the Navier-Stokes module of the Plasimo toolkit. Three different sub-studies were carried out in order to explore step-by-step the complex interplay between the geometry and the gas flow: a) a flowless classical parallel plates' geometry, b) a flowless perforated parallel plates' configuration and c) the plasma shower. Strongly non- Maxwellian kinetics is found and as a consequence the excited species are much more abundant than the charged particles. Molecular ions are the dominant ion species and it was found to unbalance even more the ion/metastable ratio via dissociative recombination to the metastable species making it the main active species in the plasma. The effect of the shower holes and the recirculation gas flow within the electrodes on the plasma is examined. The perforation of the electrode's plates modifies the spatial distributions of the E-field, leading to an intra-hole field augmentation and therefore to activation of these regions of the plasma. As the most effective outward transport mechanism, the gas flow is the basis of the formation of the post-discharge region. In addition to modifying the distribution of the plasma particles in the spatial afterglow, the flow recirculation reduces the wall losses and facilitates the- ionization and excitation processes in between the plates. Thus it plays a key-role in the stabilization of the discharge.
机译:通过与时间有关的二维流体模型研究了大气压下的电容耦合RF放电。在两个多孔穿孔电极之间的固定氩气流中产生等离子体,形成喷淋[1]。内部电极的供电频率为13.56 MHz,外部电极接地。该模型求解了有关活性物质的质量平衡方程式,并结合了用于维持等离子体的电场的泊松方程式来求解电子能量平衡方程式。使用漂移-扩散-对流方法计算了活性物质的质量平衡方程,因此考虑了整体速度。使用Plasimo工具箱的Navier-Stokes模块计算速度场。为了逐步探讨几何形状和气流之间的复杂相互作用,进行了三个子研究:a)无流动的经典平行板的几何形状,b)无流动的多孔平行板的结构,以及c)等离子淋浴。发现强烈的非麦克斯韦动力学,其结果是受激物质比带电粒子丰富得多。分子离子是主要的离子物种,并且发现通过离解重组为亚稳态物种,离子/可转移比率甚至更加不平衡,从而使其成为血浆中的主要活性物种。检查喷淋孔和电极内电极上的再循环气流对等离子体的影响。电极板的穿孔会改变电场的空间分布,从而导致孔内电场的增强,从而激活等离子体的这些区域。作为最有效的向外传输机制,气流是形成放电后区域的基础。除了改变等离子体粒子在空间余辉中的分布之外,气流再循环还减少了壁损耗,并促进了板之间的电离和激发过程。因此,它在稳定放电方面起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号