首页> 外文会议>2007 Asian symposium on computational heat transfer and fluid flow >IMPROVEMENT OF THE PERFORMANCE OF THE GAS FLOW CHANNEL IN THE PEM FUEL CELLS
【24h】

IMPROVEMENT OF THE PERFORMANCE OF THE GAS FLOW CHANNEL IN THE PEM FUEL CELLS

机译:改善PEM燃料电池中气体流动通道的性能

获取原文

摘要

This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of gas flow channel design to enhance the performance of Proton Exchange Membrane Fuel Cells (PEMFCs). To restrict the current simulations to twodimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that the increased interruption within the fluid reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid is induced by different type of obstacles: wave-like, trapezoid-like and ladder-like form and straight form by a gas flow channel. The numerical results show that compared to a conventional straight gas flow channel, the wave-like, trapezoid-like and ladder-like geometry of the proposed gas flow channel increases the mean Nusselt number (Fig.1) by a factor of approximately two. Furthermore, the periodic three patterns (wave-like, trapezoid-like and ladder-like) structure increases the gas flow velocity in the channel and hence improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another.
机译:这项研究进行数值模拟,以评估对流换热性能和气流通道设计的流速特性,以增强质子交换膜燃料电池(PEMFC)的性能。为了将当前的模拟限制为二维不可压缩的流动,假定流动状态为层流,雷诺数约为200。低的协同作用原理被用于证明流体中增加的中断会减小流体之间的相交角速度矢量和温度梯度。流体内部的中断是由不同类型的障碍物引起的:气流通道呈波浪形,梯形和梯形,直线形。数值结果表明,与传统的直通气流通道相比,拟议气流通道的波浪形,梯形和梯形几何形状使平均努塞尔数(图1)增加了大约两倍。此外,周期性的三种模式(波浪形,梯形和梯形)结构增加了通道中的气体流速,因此提高了催化剂层中的催化反应性能。最后,结果表明,气流通道的三种模式几何形状减小了速度矢量和温度梯度之间的夹角。因此,目前的数值结果与场协同原理一致,场协同原理指出,当速度矢量和温度梯度彼此紧密对齐时,对流换热得到增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号