首页> 外文会议>2006 SPE International Oil amp; Gas Conference and Exhibition in China >Percussion Drilling: From Laboratory Tests To Dynamic Modeling
【24h】

Percussion Drilling: From Laboratory Tests To Dynamic Modeling

机译:冲击钻:从实验室测试到动态建模

获取原文
获取原文并翻译 | 示例

摘要

Percussion drilling has long been considered an effectivernapproach to breaking rock in the civil and mining industries. Arnlarge number of air hammers were introduced to oil and gasrnindustries in the 1980's. However, limited fundamentalrnunderstandings of the physical mechanisms involved inrnpercussion drilling hinder its acceptance and applications.rnIn a 2-year research effort, fundamental rock physics arerninvestigated through a series of lab tests, including single impactrntests and full-scale hammer drilling tests. For each impact test,rnthree impacts are sequentially loaded at the same rock locationrnto investigate rock response to repetitive loadings. Besidesrncrater depth and width, the displacement and force in the rodrnand the force in the rock are recorded at 100K Hz frequency.rnFor hammer drilling tests, an industrial fluid hammer is used torndrill Berea sandstone and Mancos shale under bothrnunderbalanced and overbalanced conditions. The bottom holernpressure varies from 3.5MPa to 20.7MPa while pore pressure isrncontrolled separately, varying from 0MPa to 24.2MPa. Duringrnthese tests, Rate of Penetration is recorded continuously fromrnone pressure condition to another. Cuttings are then screened,rncollected, and analyzed.rnThe lab data are then used to calibrate a 3D drillingrnsimulator developed specifically for percussion drilling. First arnstrain-softening rock material model is derived from matchingrnrock stress-strain curves in a series of rock mechanical tests.rnThen a stress history is specified as loading conditions based onrnthe stress and displacement data recorded in the impact rod.rnWith appropriate material model and boundary conditions, bothrnrock displacement and indentation geometries are well matched.rnFurther, the simulation reveals in detail how rock becomesrndefragmented when receives impact. These developmentsrnimprove the fundamental understandings of rock physicsrninvolved in hammer drilling. The 3D drilling simulator can alsornbe applied to investigate rock breakage and optimize operationsrnin field.
机译:长期以来,冲击钻一直被认为是在民用和采矿业中破碎岩石的有效方法。在1980年代,大量的气锤被引入石油和天然气工业。但是,对冲击式钻探的物理机制的基本认识有限,阻碍了其接受和应用。在为期两年的研究工作中,通过一系列实验室测试对基础岩石物理进行了研究,包括单次冲击测试和大规模冲击钻探测试。对于每个冲击测试,在相同的岩石位置依次加载三个冲击,以研究岩石对重复载荷的响应。除了环形山的深度和宽度外,还记录了杆身中的位移和力以及岩石中的力以100K Hz的频率记录。rn对于锤钻测试,工业流体锤用于在不平衡和超平衡条件下钻探Berea砂岩和Mancos页岩。井底压力从3.5MPa变化到20.7MPa,而孔隙压力被分别控制,从0MPa变化到24.2MPa。在这些测试过程中,渗透率会从压力状态持续记录到另一个压力状态。然后对钻屑进行筛选,收集和分析。然后将实验室数据用于校准专门为冲击钻开发的3D钻模拟器。首先通过一系列岩石力学测试中匹配的岩石应力-应变曲线得出了一个软应变岩体模型,然后基于冲击棒中记录的应力和位移数据将应力历史指定为载荷条件.rn具有适当的材料模型和边界在这种情况下,岩石的位移和压痕的几何形状都可以很好地匹配。进一步,该模拟详细揭示了岩石在受到冲击后如何进行碎片整理。这些发展改进了对锤击钻进过程中岩石物理学的基本理解。 3D钻井模拟器也可用于调查岩石破裂和优化现场作业。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号