首页> 外文会议>2004 10th International Symposium on Antenna Technology and Applied Electromagnetics and URSI Conference >Enabling electromagnetic applications of negative-refractive-index transmission-line metamaterials part I
【24h】

Enabling electromagnetic applications of negative-refractive-index transmission-line metamaterials part I

机译:启用负折射率传输线超材料的电磁应用第一部分

获取原文
获取原文并翻译 | 示例

摘要

Metamaterials are artificial periodic media with unusual electromagnetic properties. The size of their unit cells is much smaller than the incident wavelength, thus allowing one to define effective media parameters such a permittivity ε, a permeability μ, and a refractive index n. In this work, “left-handed” metamaterials are considered for which their permittivity and permeability are both negative. These metamaterials exhibit backward-wave propagation characteristics and therefore a negative index of refraction as was predicted in the visionary work of Victor Veselago [1]. Such “left-handed” or “Negative-Refractive-Index” (NRI) media were first implemented using bulk periodic arrays of thin wires to synthesize negative permittivity and split-ring resonators to synthesize a negative permeability [2]. However, the NRI medium presented in [2] relies on resonant elements to synthesize the negative permeability thus leading to narrow bandwidths and high transmission losses. More recently, a completely planar approach for synthesizing NRI media without resonant elements was proposed in [3],[4]. The 2-Dimensional (2-D) NRI structure presented in [3],[4] was realized by periodically loading a planar network of printed transmission lines (TL) with series capacitors and shunt inductors in a dual-TL (high-pass) configuration. The 2-D NRI medium was subsequently interfaced with a commensurate conventional dielectric, leading to the first experimental demonstration of focusing from a NRI metamaterial [4], [5]. More recently, a 3-region lens arrangement was used to observe focusing beyond the diffraction limit [6]-[7] as was predicted by J.B. Pendry [9]. A similar TL approach was followed by Itoh and Caloz and led to interesting structures and circuits [10], [11]. Moreover, intriguing and useful anisotropic transmission-line metamaterials have been reported by Balmain et al. in [12]. In addition, some of the first FDTD simulations of NRI media have been reported in the pioneering work of R. Ziolkowski et al. in [13]. Further developments in the general area of Metamaterials can be found in two recent special issues: The October 2003 issue of the IEEE Transactions on Antennas and Propagation (Guest Editors R. Ziolkowski and N. Engheta) and the April 2003 issue of Optics Express (vol. 11, No. 7, Guest Editor J.B. Pendry).
机译:超材料是具有异常电磁特性的人工周期性介质。它们的晶胞的尺寸远小于入射波长,因此可以定义有效的介质参数,例如介电常数ε,磁导率μ和折射率n。在这项工作中,考虑了“左撇子”超材料,其介电常数和磁导率均为负。这些超材料表现出反向波传播特性,因此具有负折射率,这是维克托·维塞拉戈(Victor Veselago)的有远见的工作所预测的[1]。这种“左撇子”或“负折射率”(NRI)介质首先使用细线的体周期性阵列合成负介电常数,并使用开环谐振器合成负磁导率[2]。然而,文献[2]中提出的NRI介质依靠共振元件合成负磁导率,从而导致带宽窄和传输损耗高。最近,在[3],[4]中提出了一种完全平面的方法来合成没有共振元件的NRI介质。 [3],[4]中提出的二维(2-D)NRI结构是通过在双TL(高通)中周期性地为印刷传输线(TL)的平面网络加载串联电容器和并联电感器来实现的)配置。随后将2-D NRI介质与相称的常规电介质相接,从而导致首次实验证明了从NRI超材料的聚焦[4],[5]。最近,如J.B. Pendry [9]所预言的那样,使用了3区透镜布置来观察聚焦超过衍射极限[6]-[7]。 Itoh和Caloz遵循了类似的TL方法,并产生了有趣的结构和电路[10],[11]。而且,Balmain等人已经报道了有趣而有用的各向异性传输线超材料。在[12]中。此外,在R. Ziolkowski等人的开创性工作中,已经报道了NRI媒体的一些最初的FDTD模拟。在[13]中。超材料的一般领域的进一步发展可以在最近的两期特刊中找到:2003年10月出版的《 IEEE天线与传播交易》(客座编辑R. Ziolkowski和N. Engheta)和2003年4月的《光学快报》(第一卷)。 11号,第7位,客座编辑JB Pendry)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号