首页> 外文会议>SPE annual technical conference and exhibition;SPE 2002 >Real-Time 3D Earth Model Updating While Drilling a Horizontal Well
【24h】

Real-Time 3D Earth Model Updating While Drilling a Horizontal Well

机译:钻水平井时更新实时3D地球模型

获取原文
获取原文并翻译 | 示例

摘要

We describe here a test of a new technology for successfulrndrilling of horizontal wells in thin oil columns. Wernconstructed a three-dimensional (3D) earth model of thernoverburden and of the target reservoir layers on the basis ofrnpredrilling data and updated this model in real time on thernbasis of logging-while-drilling (LWD) measurementsrntransferred to remote locations using the World Wide Web.rnThis strategy allowed us to check and update the plannedrndrilling trajectory continuously with all the informationrnavailable at any given time.rnWe used uncertainties in the depth of markers observed inrna number of offset vertical wells to determine the uncertaintyrnin the thickness of layers in the earth model. This 3D modelrncomprised best estimates of the thicknesses and a covariancernmatrix that quantified their initial uncertainties. We thenrndrilled a pilot well. Trajectory data, LWD logs, and resistivityrnimages from downhole measurement-while-drilling (MWD)rnand LWD tools were transmitted in real time from thernSimpson No. 22 drill site in Indiana to a prototype applicationrnrunning in Connecticut. As we acquired new measurements inrnthe pilot well, we compared log curves predicted by the modelrnto the measured logs. Our prototype allowed an interpreter tornupdate the location of markers as the well was drilled; anrnupdate of the entire 3D earth model and its uncertainty wasrnthen automatically computed in near-real time. Quantifiedrnuncertainties are key in this stage to ensure that the modelrnupdate is in agreement with all the data considered previously.rnThis procedure was repeated while drilling the horizontalrndrain hole, which was successfully steered within a dipping 6-rnft-thick layer for 808 ft.rnOur prototype also allowed for remote collaboration: 3Drnmodel updates, LWD data, and resistivity images werernavailable to collaborators who were connected to the networkrnand simultaneously ran copies of the prototype at additionalrnlocations. In particular, the remote availability of real-timernresistivity images was key to the successful well placement, asrnthese images show how the well trajectory follows thernlayering. Remote collaboration means that drilling decisionsrncan be made collaboratively by a globally distributed team in arnsecure network environment. This can be a key capability forrngeosteering, especially in remote locations or when staffingrnis constrained.
机译:我们在这里描述了一种用于成功钻探稀油塔中的水平井的新技术的测试。 Wern在预钻数据的基础上构建了溢流层和目标储层的三维(3D)地球模型,并根据随钻测井(LWD)测量值的实时实时更新了该模型rn该策略使我们能够在任何给定时间使用所有可用信息连续检查和更新计划的钻探轨迹。我们使用在偏移垂直井数量中观察到的标记深度的不确定性来确定地球模型中层厚度的不确定性。此3D模型包含厚度的最佳估计值和量化其初始不确定性的协方差矩阵。然后,我们钻了一个试井。来自井下随钻测量(MWD)和LWD工具的轨迹数据,随钻测井和电阻率图像从印第安纳州辛普森22号钻探现场实时传输到在康涅狄格州运行的原型应用程序。当我们在试井中获得新的测量值时,我们将模型预测的测井曲线与测得的测井曲线进行了比较。我们的原型允许解释员在钻井时更新标记的位置。整个3D地球模型的更新和不确定性随后会自动近乎实时地计算出来。在这个阶段,量化不确定性是关键,以确保模型更新与之前考虑的所有数据相符。在钻水平排水孔时重复执行此过程,该孔成功在808英尺的6英尺厚的浸入式层中操纵。还允许远程协作:3Drnmodel更新,LWD数据和电阻率图像可供连接到网络的协作者使用,并同时在其他位置运行原型副本。特别是,实时电阻率图像的远程可用性是成功进行井位布置的关键,因为这些图像显示了井眼轨迹如何随地层的变化而变化。远程协作意味着可以由全球分布的团队在安全网络环境中共同做出钻探决策。这可能是进行地理导航的一项关键功能,尤其是在偏远地区或人员限制的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号