首页> 外文会议>2002 ASME Pressure Vessels and Piping Conference, Aug 5-9, 2002, Vancouver, British Columbia, Canada >APPLICATION OF ARBITRARY LAGRANGE EULER FORMULATIONS TO FLOW-INDUCED VIBRATION PROBLEMS
【24h】

APPLICATION OF ARBITRARY LAGRANGE EULER FORMULATIONS TO FLOW-INDUCED VIBRATION PROBLEMS

机译:任意拉格朗伊EULER公式在流动引起的振动问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

Most classical fluid force identification methods rely on mechanical structure response measurements associated with convenient data processes providing turbulent and fluid-elastic forces responsible for possible vibrations and damage. These techniques provide good results; however they often involve high costs as they rely on specific modellings fitted with experimental data. Owing to recent improvements in Computational Fluid Dynamics, numerical simulation of flow-induced structure vibration problems is now practicable for industrial purposes. As far as flow structure interactions are concerned, the main difficulty consists in estimating numerically fluid-elastic forces acting on mechanical components submitted to turbulent flows. The point is to take into account both fluid effects on structure motion and conversely dynamic motion effects on local flow patterns. This requires a code coupling to solve fluid and structure problems in the same time. This ability is out of limit of most classical fluid dynamics codes. That is the reason why recently an improved numerical approach has been developed and applied to the fully numerical prediction of a flexible tube dynamic response belonging to a fixed tube bundle submitted to cross flows. The methodology consists in simulating at the same time thermo-hydraulics and mechanics problems by using an Arbitrary Lagrange Euler (ALE) formulation for the fluid computation. Numerical results turn out to be consistent with available experimental data and calculations tend to show that it is now possible to simulate numerically tube bundle vibrations in presence of cross flows. Thus a new possible application for ALE The full computational process is described in the first section. Classical and improved ALE formulations are presented in the second part. Main numerical results are compared to available experimental data in section 3. Code performances are pointed out in terms of mesh generation process and code coupling method.
机译:大多数经典的流体力识别方法都依赖于与方便的数据处理相关的机械结构响应测量,该过程提供了可能引起振动和损坏的湍流和流体弹性力。这些技术提供了良好的结果。但是,由于它们依赖于符合实验数据的特定模型,因此通常会涉及高额费用。由于计算流体动力学的最新改进,现在可以将流致结构振动问题的数值模拟用于工业用途。就流动结构的相互作用而言,主要困难在于估算作用于湍流的机械部件上的流体弹力数值。重点是要既考虑流体对结构运动的影响,又要考虑动态运动对局部流动模式的影响。这就需要代码耦合来同时解决流体和结构问题。此功能超出了大多数经典流体动力学代码的范围。这就是为什么最近开发了一种改进的数值方法并将其应用于柔性管动态响应的全数值预测的原因,该柔性管动态响应属于提交给横流的固定管束。该方法包括使用任意Lagrange Euler(ALE)公式同时进行流体计算,同时模拟热工和力学问题。数值结果证明与可用的实验数据一致,并且计算趋于表明,现在可以对存在横流的管束振动进行数值模拟。因此,第一部分介绍了ALE完整计算过程的新可能应用。第二部分介绍了经典的和改进的ALE配方。在第3节中将主要数值结果与可用的实验数据进行了比较。在网格生成过程和代码耦合方法方面指出了代码性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号