首页> 外文会议>2002 ASME Pressure Vessels and Piping Conference, Aug 5-9, 2002, Vancouver, British Columbia, Canada >DESIGN OF ELLIPSOIDAL HEADS USING ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS
【24h】

DESIGN OF ELLIPSOIDAL HEADS USING ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS

机译:基于弹塑性有限元分析的椭球头设计

获取原文
获取原文并翻译 | 示例

摘要

Traditional design techniques result in excess material being required for ellipsoidal heads. The 2001 ASME Boiler and Pressure Vessel Code Section VIII Division 1, UG-32D and Section VIII Division 2, AD-204 limit the minimum design thickness of the heads. ASME Boiler and Pressure Vessel Code Case 2261 provides alternate equations that enable thinner head design thickness. VIII-2 Appendix 3 and 4 methods potentially could be used to further optimize the head thickness. All the equations in the code use one thickness for the entire head. On large diameter thin heads the center or spherical area is often thicker than the knuckle area due to the method of manufacture. Including this extra material in the design calculations results in an increase of the MAWP of large diameter thin heads. VIII-2, AD-200 of the code permits localized thinning in a circumferential band in a cylindrical shell. Applying these same rules to elliptical heads would permit thinning in the knuckle region as well. Engineers have powerful finite element analysis tools that can be used to accurately determine levels of plastic strain and plastic deformed shapes. It is proposed that VIII-2 Appendix 4 and 5 methods be permitted for the design of elliptical heads. Doing so would permit significant decreases in thickness requirements. Different methods of Plastic Finite Element Analysis (PFEA) are investigated. An analysis of a PVRC sponsored burst test is done to develop and verify the PFEA methods. Two designs based on measurements of actual vessels are analyzed to determine the maximum allowable working pressures (MAWP) for thick and thin heads with and without local thin regions. MAWP is determined by limit analysis, per VIII-2 4-136.3 and by two other proposed methods. Using Burst FEA, the calculated burst pressure is multiplied by a safety factor to obtain MAWP. Large deflection large strain elastic perfectly plastic limit analyses (LDLS EPP LL) method includes the beneficial effect of deformations when determining the maximum limit pressure. Elliptical heads become more spherical during deformation. The spherical shape has higher pressure restraining capabilities. An alternate design equation for elliptical heads based on the LDLS EPP LL calculations is also proposed.
机译:传统的设计技术导致椭圆头需要过多的材料。 2001年的ASME锅炉和压力容器规范第VIII部分1,UG-32D和VIII部分2,AD-204限制了机头的最小设计厚度。 ASME锅炉和压力容器代码案例2261提供了替代公式,可实现更薄的机头设计厚度。 VIII-2附录3和4的方法可能可以用来进一步优化打印头的厚度。代码中的所有方程对于整个磁头都使用一种厚度。在大直径的细头上,由于制造方法,中心或球形区域通常比转向节区域厚。在设计计算中包括这些额外的材料会导致大直径细头MAWP的增加。该代码的VIII-2,AD-200允许在圆柱壳的周向带中局部减薄。将这些相同的规则应用于椭圆形头部也将使指关节区域变薄。工程师拥有强大的有限元分析工具,可用于准确确定塑性应变和塑性变形形状的水平。建议允许使用VIII-2附录4和5方法设计椭圆头。这样做将大大降低厚度要求。研究了塑料有限元分析(PFEA)的不同方法。对PVRC赞助的爆破测试进行了分析,以开发和验证PFEA方法。分析了基于实际容器测量的两种设计,以确定有或没有局部薄区域的厚头和薄头的最大允许工作压力(MAWP)。根据VIII-2 4-136.3,通过极限分析和其他两种拟议方法确定MAWP。使用突发FEA,将计算出的突发压力乘以安全系数即可获得MAWP。大挠度大应变弹性完全塑性极限分析(LDLS EPP LL)方法包括确定最大极限压力时变形的有益影响。椭圆头在变形过程中变得更球形。球形具有更高的压力抑制能力。还提出了基于LDLS EPP LL计算的椭圆头的替代设计方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号