首页> 外文会议>1998 Joint Conference on the Environment, 1998, Mar 31-Apr 1, 1998, Albuquerque, NM >In-situ Biodegradation of EDB and EDC in the Presence of Gasoline
【24h】

In-situ Biodegradation of EDB and EDC in the Presence of Gasoline

机译:汽油存在下EDB和EDC的原位生物降解

获取原文
获取原文并翻译 | 示例

摘要

Ethylene dibromide (EDB) and ethylene dichloride (EDC) are additives formerly used as lead scavengers in gasoline, among other applications. Regulatory levels of these compounds are exceeded at more than one-third of the gasoline-contaminated sites in the United States. In general, the concentration of EDB and EDC is small when compared with the concentration of petroleum hydrocarbons like benzene. To gain perspective on the fate of EDB and EDC in the subsurface, publications from peer-reviewed scientific journals and societies were compiled and critiqued. Articles were grouped according to four categories: 1) microorganism physiology and genetics, 2) enzyme-catalyzed mechanisms, 3) kinetics, and 4) applications. Before soil-microbes can use EDB or EDC as a carbon source, the halogens (bromide and chlorine) must be removed, a.k.a. dehalogenation. For the most part, researchers agree that dehalogenation is an enzyme reaction. In some microorganisms, the DNA components responsible for encoding and producing these enzymes consist of a plasmid/chromosome pair. This plasmid is independently reproducible and transmutable between microorganisms; therefore, consortia of dissimilar species can share the DNA necessary for enzyme production. Haloalkane dehalogenase (dhIA) has been identified as the enzyme that separates the first of the two halogens on the EDB and EDC molecules. Additionally, researchers have found that removal of the first halogen is the rate-limiting step in biodegradation of EDB and EDC. The catalytic mechanisms of dhIA has been observed at an atomic scale using crystallographic analysis of electron density maps (Nature, 1993). In this article, a six-step catabolic process between enzyme and substrate that results in the production of a free halogen ion and an alcohol byproduct has been unveiled. Common soil microbes like Psudonomas and Xanthobacter have been isolated and grown using only EDB or EDC as a carbon source. Degradation rate constants are reported for dhIA conversion of EDB and EDC. Large and pilot scale ground-water remediation that make use of trickle filters and recirculating reactors have been used to accelerate biodegradation of EDB and EDC. Based on this research and the results from a batch experiment using contaminated ground water from Albuquerque, New Mexico, it is proposed that biodegradation of low concentration EDC and EDB occurs as a pseudo first-order reaction that is related to the background concentration of the dhIA enzyme. Future research will include development of an in-situ method to determine degradation rate constants and an assay to quantify the background levels of dhIA.
机译:乙二溴乙烷(EDB)和二氯乙烷(EDC)是以前在汽油等应用中用作铅清除剂的添加剂。在美国超过三分之一的汽油污染场所中,超过了这些化合物的监管水平。通常,与苯等石油碳氢化合物相比,EDB和EDC的浓度较小。为了深入了解EDB和EDC在地下的命运,对经过同行评审的科学期刊和社会的出版物进行了汇编和评论。文章根据四个类别进行分组:1)微生物生理和遗传学,2)酶催化的机制,3)动力学,和4)应用。在土壤微生物可以使用EDB或EDC作为碳源之前,必须先去除卤素(溴化物和氯),再进行脱卤。在大多数情况下,研究人员同意脱卤是一种酶反应。在某些微生物中,负责编码和产生这些酶的DNA成分由质粒/染色体对组成。该质粒在微生物之间可独立复制和转化。因此,不同物种的财团可以共享产生酶所需的DNA。卤代烷脱卤酶(dhIA)已被鉴定为可分离EDB和EDC分子上两个卤素中的第一个的酶。此外,研究人员发现,除去第一卤素是EDB和EDC生物降解的限速步骤。使用电子密度图的晶体学分析已在原子尺度上观察到了dhIA的催化机制(Nature,1993)。在本文中,揭示了酶和底物之间的六步分解代谢过程,该过程导致产生游离卤素离子和醇副产物。仅使用EDB或EDC作为碳源就可以分离并培养常见的土壤微生物,如肺孢子虫和黄杆菌。报告了EDB和EDC的dhIA转换的降解速率常数。利用滴流式过滤器和循环反应器的大规模中试地下水修复已被用来加速EDB和EDC的生物降解。根据这项研究以及使用来自新墨西哥州阿尔伯克基的受污染地下水进行的分批实验的结果,提出低浓度EDC和EDB的生物降解是与dhIA的背景浓度相关的伪一级反应。酶。未来的研究将包括开发一种确定降解速率常数的原位方法和一种量化dhIA背景水平的测定方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号