首页> 外文会议>SMiRT 16;International conference on structural mechanics in reactor technology >Direct Measurement of Fracture Toughness for Life Extension
【24h】

Direct Measurement of Fracture Toughness for Life Extension

机译:直接测量断裂韧性以延长寿命

获取原文
获取原文并翻译 | 示例

摘要

The Electric Power Research Institute Materials Reliability Project (MRP) is pursuing the resolution of selectedrnexisting and emerging pressurized water reactor materials performance, safety, reliability, operational and regulatory issues.rnA focus of the MRP Reactor Pressure Vessel Imegrity Issue Task Group is to resolve technical issues associated withrnapplication of fracture toughness properties for reactor vessel imegrity assessments. The direct measurement of fracturerntoughness utilizes the Master Curve approach for testing in the brittle-to-ductile transition region. It has been accepted as anrnalternate method for determining a materials reference temperature in the ASME Code (Code Case N-629). However,rnseveral issues have been identified that will require resolution prior to successful application of this technology for reactorrnpressure vessel life attainment and life extension. An objective of the EPRI MRP is to develop a strategy using directrnmeasurement of fracture toughness that is consistent with the current approach based on Charpy V-notch measurements.rnA comparison is provided using both the direct measurement approach and the Charpy based approach for resultsrnfrom two reactor pressure vessel welds. The single edge beam [SE(B)] specimens were tested in three-point bending inrnaccordance with ASTM E 1921-97, "Standard Test Method for Determination of ReferenCe Temperature, To, for Ferritic Steelrnin the Transition range". Testing was performed on specimens obtained from two welds that had been irradiated in a reactorrnvessel surveillance capsule and on specimens in the unirradiated condition.rnAn assessment was performed of the fracture tougtmess transition temperature shifts (i.e., K~c shifts) in comparisonrnto the Charpy transition temperature shifts using the data generated in an earlier evaluation of the same weld materials. (ThernCharpy V-notch data were from specimens irradiated in the same surveillance capsule as the specimens used to determine thernKxcshifts.) The irradiated reference temperature can be computed using three differem approaches: 1) computed directlyrnfrom the irradiated value of To in accordance with ASME Code Case N-629; 2) computed using the initial (unirradiated)rnvalue of To in accordance with ASME Code Case N-629 plus the irradiation induced transition temperature shift measuredrnusing the Charpy impact specimenmeasurements; and 3) computed using the initial (unirradiated) value of To in accordancernwith ASME Code Case N-629 plus the irradiation induced transition temperature shift predicted using empirical correlationsrnbased on the copper and nickel content of the welds and neutron fluence for the surveillance capsule. The first approach wasrnused to illustrate the potential benefits of the direct measurement approach.rnThe results of this evaluation were then used to assess the various strategies imended for maintaining adequaternmargins for cominued vessel operation. The strategies considered were for application of the fracture toughnessrnmeasurements that preserved the conservatisms inherent in the Charpy based approach but credited the increased accuracy ofrnthe direct measurement approach. The benefits realized from application of the strategies based on this approach werernassessed in terms of maintaining vessel imegrity throughout an extended lifetime. Successful demonstration and regulatoryrnacceptance of the direct measuremem methodology will allow owners of operating nuclear power plants to use lower materialrnreference temperatures of the reactor pressure vessel in the evaluation of pressurized thermal shock and in establishing heatuprnand cool-down limits for normal operation. This will result in greater plant operating flexibility and will provide a viablernstrategy for demonstrating adequacy of the reactor pressure vessel for life extension while retaining appropriate margins ofrnsafety.
机译:电力研究所材料可靠性项目(MRP)正在寻求解决现有和新兴压水堆材料性能,安全性,可靠性,运行和监管问题的方法。MRP反应堆压力容器完整性问题任务组的重点是解决技术问题与将断裂韧性性能应用于反应堆容器评估有关的问题。断裂韧性的直接测量利用“主曲线”方法在脆性到延性转变区域中进行测试。在ASME代码(代码案例N-629)中,它已被用作确定材料参考温度的替代方法。但是,已经确定了数个问题,在成功应用该技术以实现反应堆压力容器的使用寿命和延长使用寿命之前,需要解决这些问题。 EPRI MRP的目标是开发一种直接测量断裂韧度的策略,该策略与基于夏比V型缺口测量的当前方法相一致。同时使用直接测量方法和基于夏比的方法对两个反应堆的结果进行比较压力容器焊缝。根据ASTM E 1921-97,“确定过渡范围内铁素体钢的参考温度,To的标准测试方法”,对单边缘光束[SE(B)]样品进行了三点弯曲测试。对从两个在反应堆容器监视舱中辐照过的焊缝获得的样品以及未辐照条件下的样品进行了测试。进行了与夏比过渡相比较的断裂韧性转变温度变化(即,K〜c位移)的评估。使用早期对相同焊接材料的评估中生成的数据,温度变化。 (ThernCharpy V型缺口数据来自与用于确定rnKxcshifts的样品在同一监视舱中辐照的样品。)辐照参考温度可以使用三种不同的方法来计算:1)根据ASME规范直接从To的辐照值计算得出案例N-629; 2)根据美国机械工程师协会(ASME)案例N-629,使用To的初始(未辐照)rn值加上使用夏比冲击试样测量所测量的辐照引起的转变温度变化进行计算;和3)根据ASME编码案例N-629,使用To的初始值(未辐射),加上基于焊缝中铜和镍的含量以及监视胶囊的中子注量,使用经验相关性预测的辐照引起的转变温度变化。使用第一种方法来说明直接测量方法的潜在好处。然后,使用此评估的结果来评估为维持组合船只的适当保证金而计划的各种策略。所考虑的策略是针对断裂韧性测量的应用,该测量保留了夏比方法固有的保守性,但认为直接测量方法的准确性有所提高。评估了在此方法的基础上应用策略所获得的收益,以在整个使用寿命中保持船舶的清洁度。直接测量方法的成功演示和监管接受将使运行中的核电厂的所有者能够在评估加压热冲击和确定正常运行的加热和冷却极限时使用反应堆压力容器的较低材料参考温度。这将导致更大的工厂运行灵活性,并将提供一种可行的策略,以证明反应堆压力容器具有足够的使用寿命,同时保留适当的安全裕度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号