首页> 外文会议>15th Nordic-Baltic conference on biomedical engineering and medical physics >Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms
【24h】

Finite Element Implementation of a Structurally-Motivated Constitutive Relation for the Human Abdominal Aortic Wall with and without Aneurysms

机译:具有和不具有动脉瘤的人腹主动脉壁的结构动力本构关系的有限元实现

获取原文
获取原文并翻译 | 示例

摘要

The structural integrity of the abdominal aorta is maintained by elastin, collagen, and vascular smooth muscle cells. Changes with age in the structure can lead to develop ment of aneurysms. This paper presents initial work to capture these changes in a finite element model (FEM) of a structural ly-motivated anisotropic constitutive relation for the "four fiber family" arterial model. First a 2D implementation is used for benchmarking the FEM implementation to fitted biaxial stress-strain data obtained experimentally from four different groups of persons; 19-29 years, 30-60 years, 61-79 years and abdominal aortic aneurysm (AAA) patients. Next the constitu tive model is implemented in an anisotropic 3D FEM formula tion for future simulation of intact aortic geometries. The 2D simulations of the biaxial test experiment show good agree ment with experimental data with a standard deviation below 0.5% in all cases. The maximum axial and hoop stress in the group of AAA patients was 94.9 kPa (±0.283 kPa) and 94.3 kPa (±0.224 kPa) at maximum stretch ratios of 1.043 and 1.037, respectively. In the 3D simulations, the maximum stress is also found to occur in the AAA patient group, with the highest stress in the circumferential direction (275 kPa). Comparison with an already published isotropic model indicates that the latter underestimates the peak stress significantly. Based on these results it is concluded that the four fiber family model has been successfully implemented into a 3D anisotropic finite element model and that this model can provide more accurate insight into the stress conditions in aortic aneurysms.
机译:弹性蛋白,胶原蛋白和血管平滑肌细胞可维持腹主动脉的结构完整性。结构随着年龄的变化会导致动脉瘤的发展。本文提出了初步的工作,以捕捉“四纤维家族”动脉模型的结构动力各向异性本构关系的有限元模型(FEM)中的这些变化。首先,使用2D实现对FEM实现进行基准测试,以拟合从四组不同的人实验获得的双轴应力-应变数据; 19-29岁,30-60岁,61-79岁是腹主动脉瘤(AAA)患者。接下来,本构模型将以各向异性的3D FEM公式实现,以便将来对完整的主动脉几何形状进行仿真。在所有情况下,双轴测试实验的2D模拟均与标准偏差低于0.5%的实验数据显示出良好的一致性。在最大拉伸比为1.043和1.037时,AAA患者组的最大轴向应力和环向应力分别为94.9 kPa(±0.283 kPa)和94.3 kPa(±0.224 kPa)。在3D模拟中,在AAA患者组中也发现最大应力,而在圆周方向上最大应力(275 kPa)。与已经发布的各向同性模型进行比较表明,后者模型低估了峰值应力。基于这些结果,可以得出结论,四纤维家族模型已经成功地实现为3D各向异性有限元模型,并且该模型可以更准确地了解主动脉瘤的应力状况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号