【24h】

Cable Tunnel Ventilation

机译:电缆隧道通风

获取原文
获取原文并翻译 | 示例

摘要

EnergyAustralia’s Sydney Central Business District (CBD) cable tunnel network will form a looprn6.2 km in length. The 3.2 km long, 3.5 m, diameter city east cable tunnel (CECT) currently in design,rnwill complete the loop in 2014. This paper discusses the ventilation design of the CECT, consideringrnoperation for four functions:rn1. normal (unmanned),rn2. access (manned),rn3. purge, andrn4. emergency fi re modes.rnThe dominant design criterion which determines the required ventilation capacity for CECT is thernspecifi cation of an upper air temperature limits of 35°C (dry bulb) and 24°C (wet bulb) for mannedrnaccess, during all ambient weather conditions and cable heating loads. Simplistic static heat transferrnanalyses do not yield a suffi ciently accurate calculation of tunnel air temperature and humidity tornprovide a safe and yet economical design. The primary refi nement in the analysis discussed in thisrnpaper is associated with modelling of the system’s dynamic behaviour.rnOur means of analysis is through a thermo-fl uid-dynamic simulation of the interactions betweenrnthe diurnally and seasonally varying loads (cable heat generation, ambient air conditions andrngroundwater infl ow), tunnel airfl ow and the resulting tunnel air temperature and humidity. Thesernsimulations are validated using experimental data from the existing city south and city west cablerntunnels.rnFire life safety scenarios are also analysed and discussed in association with the ventilation design.rnVentilation strategies are developed for dealing with such emergency fi re situations.rnThe understanding and insight provided by the work offers the ability to optimise ventilation plantrnprovisions in future cable tunnels, particularly long and high energy density tunnels.
机译:EnergyAustralia的悉尼中央商务区(CBD)电缆隧道网络将形成6.2公里长的环路。目前正在设计中的长3.2公里,直径3.5 m的城市东部电缆隧道(CECT)将于2014年完成环路。本文讨论了CECT的通风设计,同时考虑了以下四个功能:正常(无人值守),rn2。进入(有人),rn3。吹扫,andrn4。紧急消防模式。决定CECT所需通风量的主要设计标准是在所有环境天气条件下,规定人为进入的最高空气温度限制为35°C(干球)和24°C(湿球)和电缆加热负荷。简单的静态传热分析无法得出足够准确的隧道空气温度和湿度计算结果,无法提供安全而经济的设计。本文讨论的分析中的主要改进与系统动态行为的建模有关。我们的分析方法是通过热流体动力学模拟来分析昼夜和季节性变化的负荷(电缆发热,环境空气)之间的相互作用。条件和地下水流入),隧道空气流量以及由此产生的隧道空气温度和湿度。这些模拟通过使用来自现有城市南部和城市西部电缆隧道的实验数据进行验证.rn还与通风设计相关地分析和讨论了消防生命安全场景.rn制定了应对此类紧急火灾情况的通风策略.rn提供了理解和见解通过这项工作,可以优化未来的电缆隧道,尤其是长能量密度高的隧道中的通风设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号