【24h】

The Use of Microbeams in Radiation Biology: An Overview

机译:微束在放射生物学中的应用:概述

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In recent years, there has been a resurgence in the use of microbeams in radiation biology. Three main research needs have underpinned this development: 1) The need to understand radiation effects at the level of a single particle traversal of relevance to radiation risk. Low-dose studies with conventional particle beams are complicated by the Poisson distribution such that the best that can be achieved is an average on one particle traversal; i.e., 37% of the population receive no hits, 37% 1 hit, and 26% greater than 1 hit. 2) The importance of understanding the distribution of radiosensitivity'' across the cell nucleus and the cell in general, to determine where critical targets and processes are located. 3) The ability to target individual cells within a population and determine responses of relevance to the in vivo situation involving cell-cell communication. Recent technological developments, such as improved imaging techniques, microengineering and radiation detector technologies and the major advances in cell biology techniques, which allow one to measure effects at the single-cell level, have generated new interest in this area. Microbeams are an example of several approaches designed to target radiation to regions of cells or tissues. Other approaches include: 1) The use of biostacks, which involves recording the positions of particle traversals using track-etch techniques and relating these to the positions of the cells growing on these detectors. This approach has already been used in several studies determining cell survival to low doses of a particles with a view to measuring the effects of a single particle traversal. 2) Targeting of radioisotopes into specific molecules within cells. For example, ~(125)IdUrd to target DNA and the cell nucleus and ~(125)I-concanavalin A to target the cell membrane and cytoplasm. Other approaches currently in clinical trials include boron neutron capture studies where epithermal neutrons are used to target boronated compounds in tumour cells, leading to the production of short-range a particles and ~7Li particles. 3) Another approach that has been used successfully is to target groups of cells within a population using a grid which shields a known fraction of the dish being exposed. This approach has the advantage of being able to allow large numbers of cells to be exposed quickly, but the disadvantage of not being able to specify the region within cells which is irradiated.
机译:近年来,在放射生物学中使用微束的复兴。这一发展支撑了三个主要的研究需求:1)需要在与辐射风险相关的单个粒子遍历水平上了解辐射效应。常规粒子束的低剂量研究由于泊松分布而变得复杂,以至于可以实现的最佳结果是一个粒子遍历的平均值。也就是说,有37%的人口未获得任何点击,有37%的人口获得了1命中,有26%的人口超过了1。 2)了解整个细胞核和整个细胞的放射敏感性分布的重要性,以确定关键靶标和过程的位置。 3)靶向群体中单个细胞并确定与涉及细胞间通讯的体内情况相关的反应的能力。最近的技术发展,例如改进的成像技术,微工程学和放射线检测器技术以及细胞生物学技术的重大进步,使人们能够在单细胞水平上测量效应,这引起了这一领域的新兴趣。微束是旨在将辐射靶向细胞或组织区域的几种方法的示例。其他方法包括:1)生物堆栈的使用,这包括使用轨迹蚀刻技术记录粒子穿越的位置,并将其与这些检测器上生长的细胞的位置相关联。这种方法已经用于确定低剂量颗粒的细胞存活的数项研究中,以测量单个颗粒穿越的影响。 2)将放射性同位素靶向细胞内的特定分子。例如,〜(125)IdUrd靶向DNA和细胞核,〜(125)I-伴刀豆球蛋白A靶向细胞膜和细胞质。当前临床试验中的其他方法包括硼中子捕获研究,其中超热中子用于靶向肿瘤细胞中的硼化化合物,从而导致短程粒子和〜7Li粒子的产生。 3)已成功使用的另一种方法是使用网格屏蔽种群中已知细胞部分的网格,从而锁定群体中的细胞组。该方法的优点是能够迅速暴露大量细胞,但是其缺点是不能指定细胞内被照射的区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号