首页> 外文会议>10th International conference on bond graph modeling and simulation 2012. >Dynamic Model of an Oilwell Drillstring with Stick-Slip and Bit-Bounce Interaction
【24h】

Dynamic Model of an Oilwell Drillstring with Stick-Slip and Bit-Bounce Interaction

机译:粘滑与弹跳相互作用的油井钻柱动力学模型

获取原文
获取原文并翻译 | 示例

摘要

Oilwell drillstrings sometimes vibrate severely and can twist off in hard rock drilling. Stick-slip particularly predominates when drilling with polycrystalline diamond compact (PDC) bits, which may also excite severe axial and lateral vibrations in the bottom hole assembly, causing damage to the drillstrings and downhole equipment. Controlling these vibrations is essential to improving the efficiency and minimizing the cost of drilling. A bond graph model of a drillstring has been developed that predicts axial vibration, torsional vibration, and coupling between axial and torsional vibration due to bit-rock interaction. Axial and torsional submodels use a lumped-segment approach, with each submodel having a total of 21 segments to capture vibration of the kelly, drill pipes, and drill collars. In addition, the model incorporates viscous damping, hydrodynamic damping, and hydraulic forces due to drilling mud; an empirical treatment of rock-bit interaction, and top drive motor dynamics. The model predicts the expected coupling between weight on bit (WOB), bit speed, and rock-bit interface conditions; and their effect on stick-slip. Low bit speed and high WOB cause stick-slip. Mitigating open-loop measures used in the drilling industry (increasing rotary speed and decreasing WOB through changing derrick cable tension) were applied to the model, and successfully eliminated stick-slip. A linear quadratic regulator (LQR) controller was then implemented which controlled stick slip and eliminated bit bounce.
机译:油井钻柱有时会剧烈振动,并可能在硬岩钻探中扭曲。在使用多晶金刚石复合片(PDC)钻头进行钻进时,粘滑尤其明显,这也可能激发井底钻具组件中的严重轴向和横向振动,从而损坏钻柱和井下设备。控制这些振动对于提高效率和最小化钻孔成本至关重要。已经开发了钻柱的粘结图模型,该模型预测轴向振动,扭转振动以及由于钻头-岩石相互作用而引起的轴向振动和扭转振动之间的耦合。轴向和扭转子模型使用集总段方法,每个子模型共有21个段,以捕获方钻杆,钻杆和钻collar的振动。此外,该模型还包含了粘性阻尼,流体动力阻尼和钻井泥浆产生的水力。岩石相互作用和顶部驱动电机动力学的经验方法。该模型预测了钻压(WOB),钻头速度和岩石钻头界面条件之间的预期耦合。以及它们对防滑的影响。低位速度和高WOB会导致粘滑。该模型采用了减轻钻井行业开环的措施(通过改变井架电缆的张力来提高转速并降低WOB),并成功消除了粘滑现象。然后实施了线性二次调节器(LQR)控制器,该控制器控制了打滑并消除了钻头反弹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号