首页> 外国专利> TARGET TRACKING METHOD AND APPARATUS BASED ON MEASUREMENT ALLOCATION

TARGET TRACKING METHOD AND APPARATUS BASED ON MEASUREMENT ALLOCATION

机译:基于测量分配的目标跟踪方法和装置

摘要

A target tracking method and apparatus based on measurement allocation. The method comprises: determining, on the basis of a state distribution, a presence probability, a detection identifier and a track identifier of each target at a previous moment, a predicted state distribution, a predicted presence probability, a predicted detection identifier and a predicted track identifier of each existing target at a current moment (101); generating a state distribution, a presence probability, a detection identifier and a track identifier of each new target at the current moment, and combining the predicted state distribution, the predicted presence probability, the predicted detection identifier and the predicted track identifier of each existing target at the current moment with the state distribution, the presence probability, the detection identifier and the track identifier of each new target at the current moment to obtain predicted state distributions, predicted presence probabilities, predicted detection identifiers and predicted track identifiers of all targets at the current moment (102); using the Bayes' rule to process the predicted state distribution and the predicted presence probability, obtained by means of combination, of each target at the current moment and all measurements at the current moment to obtain an updated state distribution, an updated presence probability and an updated detection identifier, corresponding to each measurement, of each target at the current moment, and an association probability of each target and each measurement (103); building a two-dimensional allocation problem on the basis of the association probability of each target and each measurement and a clutter density, solving the two-dimensional allocation problem to obtain an allocation result of all the measurements in the targets and clutter, and finally adjusting, according to the allocation result, the updated presence probability and the updated detection identifier (104); determining whether each target is an existing target at the current moment and is undetected (105); if so, respectively taking the predicted state distribution and the predicted detection identifier of the target as a state distribution and a detection identifier of the target at the current moment, and taking a product of the predicted presence probability and a preset attenuation factor of the target as a presence probability of the target at the current moment (106); if not, respectively taking an updated state distribution, an updated presence probability and an updated detection identifier corresponding to an index number of the maximum updated presence probability among all adjusted updated presence probabilities of the targets as a state distribution, a presence probability and a detection identifier of the target at the current moment (107); taking the predicted track identifier of the target as a track identifier of the target at the current moment (108); extracting, from all the targets at the current moment, targets for which the presence probabilities are greater than a first probability threshold value, respectively forming a state distribution set and a track identifier set at the current moment with state distributions and track identifiers of the extracted targets, and taking same as outputs of a filter at the current moment (109); and screening out, from all the targets at the current moment, targets for which presence probabilities are greater than or equal to a second probability threshold value, and taking state distributions, the presence probabilities, detection identifiers and track identifiers of all the screened targets as inputs of the filter for the next recursion (110). Multi-target tracking precision is guaranteed, the calculation quantity is effectively reduced, and the applicability in scenarios where clutter and non-detection are present is quite strong.
机译:一种基于测量分配的目标跟踪方法和装置。该方法包括:基于状态分布,确定概率,检测标识符和前一刻,预测状态分布,预测的存在概率,预测检测标识符和预测的每个目标的轨道标识符当前时刻(101)的每个现有目标的跟踪标识符;生成状态分布,存在概率,检测标识符和当前时刻的每个新目标的跟踪标识,并组合预测状态分布,预测的存在概率,预测检测标识符和每个现有目标的预测跟踪标识符在当前时刻在状态分布,存在概率,检测标识符和当前时刻的每个新目标的轨道标识符,以获得预测状态分布,预测的存在概率,预测的所有目标的预测检测标识符和预测的轨道标识符当前时刻(102);使用贝叶斯规则处理通过组合的预测状态分布和预测的存在概率,每个目标在当前时刻的每个目标和当前时刻的所有测量获得更新的状态分布,更新的存在概率和一个更新的检测标识符,对应于当前时刻的每个目标的每个测量,以及每个目标的关联概率和每个测量(103);基于每个目标的关联概率和每个测量和杂波密度的基础构建二维分配问题,解决二维分配问题,以获得目标和杂波中所有测量的分配结果,并且最终调整根据分配结果,更新的存在概率和更新的检测标识符(104);确定每个目标是否是当前时刻的现有目标,未被发现(105);如果是,则分别以预测状态分布和目标的预测检测标识符作为当前时刻的目标分布和目标的检测标识符,并占据目标的预设存在概率和预设衰减因子的乘积作为当前时刻的目标的存在概率(106);如果没有,分别占用更新的状态分发,更新的存在概率和与目标的最大更新的呈现概率的索引号和更新的检测标识符相对应在目标的所有调整的更新的呈现概率之间作为状态分布,存在概率和检测当前时刻的目标标识符(107);将目标的预测跟踪标识符作为当前时刻(108)的轨道标识符(108);从当前时刻的所有目标提取,存在概率大于第一概率阈值的目标,分别形成状态分布集和在当前时刻设置的轨道标识符,以及所提取的状态分布和跟踪标识符目标,并在当前时刻(109)的过滤器输出相同;从当前时刻的所有目标筛选出来的目标概率大于或等于第二概率阈值,以及采用所有屏蔽目标的状态分布,存在概率,检测标识符和跟踪标识符的目标用于下一个递归的过滤器的输入(110)。保证了多目标跟踪精度,计算量有效地减少,并且存在杂乱和非检测的场景中的适用性非常强。

著录项

  • 公开/公告号WO2021036367A1

    专利类型

  • 公开/公告日2021-03-04

    原文格式PDF

  • 申请/专利权人 SHENZHEN UNIVERSITY;

    申请/专利号WO2020CN91981

  • 申请日2020-05-25

  • 分类号G01S5/02;G06F17/16;G06F17/18;G06N7;

  • 国家 CN

  • 入库时间 2022-08-24 17:33:06

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号