首页> 外国专利> Method of and apparatus for determining or forecasting the future value of certain meteorological parameters

Method of and apparatus for determining or forecasting the future value of certain meteorological parameters

机译:用于确定或预测某些气象参数的未来值的方法和装置

摘要

749,589. Electric analogue calculating systems. GIAO, A., and RAYMOND, F. H. Dec. 1, 1952, No. 30387/52. Class 37. In apparatus for determining or forecasting the prospective value at a given geographical point, after a given time interval from a datum, of a meterological parameter such as atmospheric pressure, temperature, wind velocity, and the like satisfying equation (1) below from a chart of mean isothermal lines and a chart of isolines indicating the initial condition of the function Fo of the said unknown parameter as defined by equation (6) below; there are provided (a) means for automatically scanning the chart of mean isothermal lines along meridians, commencing with a datum meridian containing or lying closely adjacent to the given point and proceeding along successive meridians lying along a direction (referred to the datum meridian) of the isothermal lines contrary to the direction of transfer movement of the function Fo until an area has been scanned proportionally to the given time interval after allowance for corrections necessitated by variations in the chart scale along the meridians; such area lying between a pair of isothermal lines of which one intersects or passes adjacently to the given point, the datum meridian and a further meridian displaced therefrom in a direction contrary to the transfer movement of function Fo; (b) means for scanning the isoline chart along meridians commencing with the datum meridian and proceeding similarly along successive meridians in a direction contrary to the transfer movement of the function Fo; (c) electrical means for algebraically counting the isolines traversed by each scanning line of the isolinear chart with reference to the increase or decrease of the said unknown parameter or its function Fo along the direction of count across each isoline, to determine at each time instant of the count the value of the function for the position attained by the scanning means, and thus to obtain a voltage representing the value of the function Fo at a point on the said further meridian and lying either on or between the said pair of isothermal lines ; (d) electrical means for multiplying such functional value by a weight function defined by equation (5) below to produce a representative product voltage; (e) means for initiating repetitive performance of the operations set forth above with respect to further pairs of isothermal lines displaced towards the geographical pole from the first pair of isothermal lines; and (f) means for electrically integrating the succession of representative product voltage values thus obtained. The unknown meteorological parameter p is defined by where t=time ; #=the two-dimensional gradient operator; H=a transfer velocity vector tangential to the earth's surface and defined by equation (2) below; #=a vector having the dimension of length, given by equation (3) below; and it is stated that where K=an absolute constant; #=the geographical latitude; Q=the angular velocity of terrestial rotation; R = the gas constant for air; Tm=the mean air temperature over the given time period; r=the mean terrestial radius ; #Kz=the unit vector normal to the earth's surface; Kn=the unit vector of the meridians. Equation (1) above is stated to be soluble by the expression (4) in which (5) and (6) where N= length measured along the meridians towards the geographical pole of the appropriate hemisphere; #0=the latitude of the given point; #po = the initial value of parameter p (+ a constant, if necessary, to give positive values) ; Fo=a function transferable during the operative time interval along the streamlines of the transfer velocity vector H; {Fo}= the value of Fo at the given point and at other places on the meridian of such point at the end of the operative time interval. The Specification contains references to the literature in which the basic mathematics fundamental to the above relations is stated to be set forth. Fig. 1 shows a group of incremental isolines of function Fo and an associated group of incremental isotherms (equivalent to the streamlines of the vector H disposed about a meridian M of longitude #=#α) and the first portion of the apparatus determines the successive values of the function Fo; {Fo} 1 , {Fo} 2 , {Fo} 3 , {Fo} 4 , &c. to {Fo} n , for the values of the several streamlines and the corresponding values of # along the meridian M (#=#α) and in operating the transfer of function Fo to successive points along meridian M during the said given time interval, with due allowance for variable displacement of the isolines of Fo at vector velocity H along the several streamlines thereof in accordance with equation (7) Figs. 2, 3 show as mirror images on transparent surfaces 1, 2 the respective Mercator projections of the isotherms and isolines of the function Fo obtaining over the portion of the earth's surface shown in Fig. 1, on which any selected point is determinable by orthogonal co-oidinates #, # of longitude and latitude; and the thick lines in Fig. 2 represent a group of streamlines of the transfer velocity vector H, i.e. the isotherms of the mean temperature field Tm of the geographical area shown in Fig. 1, according to equation (2) above; while the thick lines in Fig. 3 represent the isolines of function F 0 for the same area, traced in double lines when # F 0 /# # 0 and in single lines when # F 0 /# # 0 for optical sign discrimination. For a given longitude #α the intersections thereof with the streamlines of H (Fig. 2) define a series of ordinates # 1 , # 2 , #3, # 4 , &c. to # n (not shown) at points A, and for a transfer time t the path of each streamline at velocity - H determines a series of points B corresponding to respective points A and defined by a given longitude and latitude value. For each point B (Fig. 2) there exists a corresponding point C at the same longitude and latitude (Fig. 3) defining a particular value F 1 , F 2 , F 3 , F 4 , &c. to F n of the function Fo, which is transferable to ordinates #1, # 2 , # 3 , # 4 , &c. to # n (not shown) of points A at longitude #α and representing the desired transfer of function Fo along the streamlines of the velocity field H for a time t hours. It is shown from equation (2) above that time t hours is given by where A and B are two points of a streamline ofH; #Tm= the constant difference in air temperature between two successive isotherms in ‹ C. ; #NSP1/SP= the distance in millimetres between such isothermal streamlines of H measured along the meridians; #= longitude in degrees; E = the Mercator scale of the representation of H in Fig. 2; and neglecting sin # cosSP2/SP # the transfer time t is proportional to the area between successive streamlines and the meridians of points A, B. For a vertical scanning along the meridians in time 6 at linear velocity where α is a constant velocity, equation (8) reduces to (9) where ## is the scanning time interval A between successive streamlines of H. Fig. 5 shows a scanning device wherein the beams of cathode-ray tubes 18, 19 are deflected at constant velocity in the horizontal direction by a sawtooth waveform from a conventional frame time-base generator 27 and in the vertical direction by a conventional timebase generator 29 and line pulse generator 30; the former being adapted to produce a waveform such that the vertical beam deflection velocity varies in accordance with its deflected position to compensate for the non-linear distribution of degrees of latitude in Mercator projection. The moving spot traces out a raster on fluorescent screens 20, 21 to illuminate the tiansparent charts 1, 2 which are optically focused on the cathodes of photocells 23, 25, and the amplified output of cell 23 comprising a train of pulses coresponding to the intersections between the spot movement and the streamlines of the chart showing the field of vector H operates a step-bystep or binary pulse counter 33 which is reset after each line sweep during the line blanking flyback period by a signal derived at output 34 of the pulse generator 30. A decoder 35 associated with the counter delivers counting position index voltages one at a time for each position of the count to its multiple outputs (36 to 39 &c.) which are separately connected to the inputs of corresponding gating transfer stages (40 to 43 &c.) also receiving counter operating pulses from the amplified output of photocell 23 through a time delay network 45 and contacts 90 of relay 59. The transfer stages (which may comprise pentodes receiving the index voltages on their control grids and the pulses on their suppressor grids) thus operate one at a time to transmit counting index voltages at a fixed time interval from completion of the appropriate count to channels 46 to 49 &c. connected to transfer stages 54 to 57 &c. also receiving sawtooth waveforms from line timebase generator 29 over contacts 60 of relay 59 to successively convert the counting index voltages to analogue voltages representing the successive values of # 1 , # 2 , # 3 , # 4 , &c. to # n , (not shown) of the variable # for the meridian #=#α which are supplied to the corresponding input terminals 11SP1/SP# 11SP2/SP#, &c. to 11SPn/SP# of the recording servo-systems 8SP1/SP to 8SPn/SP (Fig. 4) set forth below. The line sweep sawtooth waveforms are summed by counter 61 which steps once at the beginning of each line to vary a bank of decoding resistances (not shown) delivering a voltage proportional to the count to one winding of differential relay 59 whose other winding is energized from potentiometer 63 by a voltage adjustable to the desired scanning longitude #α. Relay 59 operates after the scanning of any predetermined number of lines L in the range O to N (where N is the maximum count capacity equal to the number of vertical sweep lines per image), and closes contacts 60 so that the line sweep voltag
机译:749,589。电气模拟计算系统。 GIAO,A。和RAYMOND,F。H.,1952年12月1日,编号30387/52。类别37.在用于确定或预测从基准的给定时间间隔之后的给定地理点的期望值的计量参数中,满足以下等式(1)的诸如大气压力,温度,风速等的计量学参数的装置从平均等温线图和等值线图,其表示所述未知参数的函数Fo的初始条件,如以下等式(6)所定义;提供了(a)自动扫描沿子午线的平均等温线图的装置,该子午线从包含或紧邻给定点的基准子午线开始,沿着沿子午线方向(称为基准子午线)的连续子午线进行等温线与函数Fo的传递运动方向相反,直到在允许校正因沿子午线的海图比例尺变化而需要校正之后,与给定时间间隔成比例地扫描区域为止;位于一对等温线之间的区域,其中一条等温线与给定点相交或相邻,基准子午线和另一个子午线沿与函数Fo的传递运动相反的方向位移; (b)沿着与基准子午线开始的子午线扫描等值线图,并沿连续子午线类似地沿与函数Fo的传递运动相反的方向前进的装置; (c)用于参考所述未知参数或其函数Fo沿每条等值线的计数方向的增加或减少,对等值线图的各条扫描线所遍历的等值线进行代数计数的电气装置,以确定在每个时刻计数的函数值通过扫描装置所达到的位置,从而获得代表函数Fo的值的电压,该电压在所述另一子午线上的一点上并且位于所述一对等温线上或之间; (d)用于将该功能值乘以下面的等式(5)定义的权函数的电气装置,以产生代表性的乘积电压; (e)对于从第一对等温线向地理极移开的另外两对等温线,启动上述操作的重复执行的装置; (f)用于电积分由此获得的一系列代表产品电压值的装置。未知的气象参数p定义为: #=二维梯度算子; H =与地球表面相切的传递速度矢量,由下面的等式(2)定义; #=具有长度尺寸的矢量,由以下等式(3)给出;并且说,其中K =绝对常数; #=地理纬度; Q =陆地旋转的角速度; R =空气的气体常数; Tm =给定时间段内的平均气温; r =平均陆地半径; #Kz =垂直于地球表面的单位向量; Kn =经络的单位向量。上面的等式(1)通过表达式(4)可解,其中(5)和(6),其中N =沿着子午线朝着适当的半球的地理极测量的长度; #0 =给定点的纬度; #po =参数p的初始值(如果需要,可以加上一个常数,以给出正值); Fo =在操作时间间隔内沿着传递速度矢量H的流线可传递的函数; {Fo} =在操作时间间隔结束时,在给定点以及该点子午线上其他位置的Fo值。该说明书包含参考文献,其中陈述了建立上述关系的基础基本数学。图1示出了一组函数Fo的增量等值线和一组相关的等温线(等效于围绕经度#=#α的子午线M布置的矢量H的流线),并且该设备的第一部分确定了连续的等值线。函数Fo的值; {Fo} 1,{Fo} 2,{Fo} 3,{Fo} 4,等等。到{Fo} n,对于多个流线的值和沿子午线M的#的对应值(#=#α),以及在所述给定时间间隔内,将函数Fo传递到子午线M的连续点时,根据等式(7),适当地允许矢量速度为H的Fo等高线沿其多条流线的可变位移。图2、3在透明表面1、2上以镜像形式显示在图1所示的地球表面部分上获得的函数Fo的等温线和等值线的墨卡托投影,在该投影上可以通过正交余弦确定任何选定点-oidinates#,经纬度编号;图2中的粗线表示传递速度矢量H的一组流线,即,根据上述等式(2),图1所示的地理区域的平均温度场Tm的等温线;图3中的粗线代表相同区域的函数F 0的等值线,在#F 0 /##<0时以双线描绘,在#F 0 /##> 0时以单线描绘以区分光学符号。对于给定的经度#α,其与H的流线的交点(图2)定义了一系列坐标#1,#2,#3,#4,&c。对于在点A处的#n(未示出),并且对于转移时间t,每个流线的路径以速度-H确定对应于各个点A并且由给定的经度和纬度值定义的一系列点B。对于每个点B(图2),在相同的经度和纬度(图3)处都存在一个对应的点C,定义了一个特定值F 1,F 2,F 3,F 4和c。到函数Fo的F n,其可转换为坐标#1,#2,#3,#4,&c。在时间t小时内,在经度为#α的点A的#n至#n(未示出)处表示函数Fo沿速度场H的流线的期望传递。从上面的等式(2)表明,时间t小时由下式给出:其中A和B是H的流线的两个点; #Tm = ‹C中两个连续等温线之间的空气温度常数差; #N 1 =沿着子午线测量的H等温线之间的距离,以毫米为单位; #=经度(以度为单位); E =图2中H表示的墨卡托比例。并忽略sin#cos 2 #,传输时间t与连续流线和点A,B的子午线之间的面积成比例。对于沿时间6的子午线以线速度进行垂直扫描,其中α如果是恒定速度,则等式(8)简化为(9),其中##是H的连续流线之间的扫描时间间隔A。图5显示了一种扫描装置,其中阴极射线管18、19的光束偏转为通过来自常规帧时基发生器27的锯齿波形在水平方向上保持恒定的速度,以及通过常规时基发生器29和线脉冲发生器30在垂直方向上的恒定速度;前者适于产生波形,使得垂直光束偏转速度根据其偏转位置而变化,以补偿墨卡托投影中纬度的非线性分布。该移动点在荧光屏20、21上描绘出一个光栅,以照亮透视图1、2,这些图光学地聚焦在光电管23、25的阴极上,并且光电管23的放大输出包括与交点对应的一连串脉冲。在点运动和表示矢量H的场的图表的流线之间移动一个步进或二进制脉冲计数器33,在行消隐反激周期中的每次行扫描之后,该脉冲计数器都会被脉冲发生器的输出34导出的信号复位30.与计数器关联的解码器35一次将针对每个计数位置的一个计数位置索引电压传送到其多个输出(36至39&c。),这些输出分别连接至相应选通传输级(40至90)的输入。 43和c。)还通过延时网络45和继电器59的触点90从光电管23的放大输出中接收计数器操作脉冲。传输级(可能包括p因此,在它们的控制栅极上接收到索引电压的各个节点和在其抑制器栅极上接收到的脉冲的一个节点一次操作一次,以从完成适当的计数到固定的时间间隔将计数的索引电压传输到通道46至49&c。连接到传输级54至57&c。还从线时基发生器29通过继电器59的触点60接收锯齿波形,以将计数索引电压相继转换为代表#1,#2,#3,#4,&c的连续值的模拟电压。子午线#=#α的变量#的#n(未示出)被提供给相应的输入端子11 1 #11 2 #,&c。如下所示的记录伺服系统8 1 至8 n 至11 n #(图4)。计数器61对行扫描锯齿波形求和,计数器61在每条线的开始处步进一次,以改变一组解码电阻(未示出),向差分继电器59的一个绕组提供与计数成正比的电压,其另一绕组从该绕组通电。电位器63的电压可调节至所需的扫描经度#α。继电器59在扫描范围为O到N的任何预定数量的线L之后运行(其中N是最大计数容量,等于每幅图像的垂直扫描线的数量),并闭合触点60,以使线扫描电压下降

著录项

  • 公开/公告号GB749589A

    专利类型

  • 公开/公告日1956-05-30

    原文格式PDF

  • 申请/专利权人 ANTONIO GIAO;FRANCOIS HENRI RAYMOND;

    申请/专利号GB19520030387

  • 发明设计人

    申请日1952-12-01

  • 分类号G06G7/26;G06G7/40;

  • 国家 GB

  • 入库时间 2022-08-23 22:48:27

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号