首页> 外国专利> A method for the production and to the increase of the oberflaechenleitfaehigkeit electrically conductive films, as well as for the layer-by-layer change of the conductivity type for n - and p - layers, in particular for an electroluminescent by a helicoidal guide lamps and photocells

A method for the production and to the increase of the oberflaechenleitfaehigkeit electrically conductive films, as well as for the layer-by-layer change of the conductivity type for n - and p - layers, in particular for an electroluminescent by a helicoidal guide lamps and photocells

机译:本发明涉及一种用于制造和增加Oberflaechenleitfaehigkeit导电膜的方法,以及用于逐层改变n-层和p-层的导电类型的方法,特别是用于通过螺旋形的导向灯和光电管

摘要

PICT:0987866/C4-C5/1 PICT:0987866/C4-C5/2 PICT:0987866/C4-C5/3 The surface of a crystalline layer of a zinc-sulphide type compound consisting of one or both of zinc and cadmium with one or more of oxygen, sulphur, selenium, and tellurium has a layer formed on its surface in which the cation is partly replaced by another metallic ion. As described, the metallic ion is replaced by a Group IB metal so that the adjacent layers have the same anion. The original compound may contain suitable activators to produce luminiscence and may be deposited on substrates or heat resisting glass or a polyethylene terephthalate tape. The zinc sulphide type layer may be produced as shown in Fig. 1 by vapour deposition of a zinc or cadmium coating from a crucible 4 heated by an electric current on to glass plate 8 which is heated by a resistance winding 11. The jar is evacuated through an outlet 3. alternatively, if a vapour reaction technique is to be used, substrate 8 is heated by a coil 11 and a suitable compound such as zinc chloride is evaporated while hydrogen sulphide is admitted through inlet tube 13 to react with the zinc chloride and deposit zinc sulphide on the plate. If manganese chloride is included in the crucible, the zinc sulphide layer is manganese and chloride activated. In further examples, the crucible contains zinc chloride and the gas admitted is hydrogen selenide or hydrogen telluride. In a still further example, elemental zinc, cadmium, and zinc chloride are evaporated in an atmosphere of hydrogen sulphide. After the deposition of the zinc sulphide type compound, the coated substrate is immersed in a solution which exchanges the cation in the compound for PICT:0987866/C4-C5/4 copper, silver or gold. Suitable compounds are copper acetate, sulphate, chloride, bromide, nitrate, and carbonate, copper acetyl, acetonal and the corresponding gold and silver compounds. The salts used are generally divalent but a monovalent stable salt is suitable. Their solutes may be present with reducing agents such as hydrazine sulphate and sodium hypophosphite which cause the metallic ion to exist in a monovalent state. The solvent may be water or an organic polar liquid such as ethyl or methyl alcohol or ethylene glycol. A complexing agent may be added since monovalent compounds are not readily soluble. Pyridine, ammonia, aniline quinoline and thiourea are suggested. The monovalent ions in solution are said to replace the zinc or cadmium in the crystal lattice resulting in a film or skin of a copper, silver or gold compound of sulphur, selenium, or tellerium. Cathode ray tube coating (Fig. 3).-The face plate of a cathode ray tube has on it a phosphor layer 12 in which the zinc or cadmium of the zinc sulphide type compound is replaced as described above to form a conducting coating 15. Heated windshield.-The zinc sulphide type compound may be deposited on a plastic or glass windshield to act as a heater to prevent ice formation. Such a layer may also be used as a radiant heater. Thermo-plastic recording system.-A roll of polyethylene terephthalate tape may be coated in the apparatus shown in Fig. 5 in which the tape is driven from roller 27 to roller 28 while vapour deposition of the zinc sulphide type layer takes place. Treatment of the tape as described produces a conducting layer on the surface and the tape is then recoated with a thermoplastic player of spraying and passing over a doctor roller. Electroluminescent device.-Fig. 6 shows a collision excitation electroluminescent device including an N-type region of any of the zinc and cadmium sulpho-selenide family of phosphors including zinc selenide, zinc sulphide, cadmium sulphide, cadmium selenide, zinc cadmium sulphide, zinc cadmium selenide, zinc cadmium sulpho-selenide, zinc sulpho-selenide, cadmium sulpho-selenide, zinc oxide and mixtures thereof. A P-type region 43 is contiguous with the N region and is a compound having a cation selected from Group IB of the Periodic Table and has the same anion as the N-type region. Electrodes 45, 46 of indium, silver or tin ether oxide or reduced are in contact with the P and N layers and the whole is supported on a glass plate 47. The lower electrode may be light reflecting. The P region is 30rA in thickness and the N region 10 microns. The phosphor may be activated with any of copper, silver, chlorine, bromine, indium, gallium and aluminium while manganese, arsenic and antimony with a co-activator of chlorine are suggested for D.C. operation. In a further device (Fig. 7, not shown) a recombination electroluminescent device has an N layer of 5 microns thickness and a P layer 122 greater than one minority carrier diffusion length thick, say 1/2 to 1 micron. Each layer should also have sufficient impurities to serve as recombination centres. The device is connected with the junction biased in the forward direction.ALSO:PICT:0987866/C6-C7/1 PICT:0987866/C6-C7/2 PICT:0987866/C6-C7/3 PICT:0987866/C6-C7/4 The surface of a crystalline layer of a zinc-sulphide type compound consisting of one or both of zinc and cadmium with one or more of oxygen, sulphur, selenium, and tellurium, has a layer formed on its surface in which the cation is partly replaced by another metallic ion. As described, the metallic ion is replaced by a Group Ib metal so that the adjacent layers have the same anion. The original compound may contain suitable activators to produce luminescence and may be deposited on substrates of heat-resisting glass or a polyethylene terephthalate tape. The zinc-sulphide type layer may be produced as shown in Fig. 1 by vapour deposition of a zinc or cadmium coating from a crucible 4 heated by an electric current on to a glass plate 8 which is heated by a resistance winding 11. The jar is evacuated through an outlet 3. Alternatively, if a vapour reaction technique is to be used, substrate 8 is heated by a coil 11 and suitable compound such as zinc chloride is evaporated while hydrogen sulphide is admitted through inlet tube 13 to react with the zinc chloride and deposit zinc sulphide on the plate. If manganese chloride is included in the crucible the zinc-sulphide layer is manganese and chlorine activated. In further examples, the crucible contains zinc chloride and the gas admitted is hydrogen selenide or hydrogen telluride. In a still further example, elemental zinc cadmium and zinc chloride are evaporated in an atmosphere of hydrogen sulphide. After the deposition of the zinc-sulphide type compound, the coated substrate is immersed in a solution which exchanges the cation in the compound for copper, silver or gold. Suitable compounds are copper acetate, sulphate, chloride, bromide, nitrate, and carbonate, copper acetyl, acetonal and the corresponding gold and silver compounds. The salts used are generally divalent but a monovalent stable salt is suitable. Their solutes may be present with reducing agents such as hydrazine sulphate and sodium hypophosphite which cause the metallic ion to exist in a monovalent state. The solvent may be water or an organic polar liquid such as ethyl or methyl alcohol or ethylene glycol. A complexing agent may be added since monovalent compounds are not readily soluble. Pyridine, ammonia, aniline quinoline and thiorea are suggested. The monovalent ions in solution are said to replace the zinc or cadmium in the crystal lattice resulting in a film or skin of a copper, silver or gold compound of sulphur, selenium, or tellurium. Cathode ray tube coating (Fig. 3). The face plate of a cathode ray tube has on it a phosphor layer 12 in which the zinc or cadmium of the zinc-sulphide type compound is replaced as described above to form a conducting coating 15. Heated windshield. The zinc-sulphide type compound may be deposited on a plastic or glass windshield to act as a heater to prevent ice formation. The modified conductivity of the surface provides the connection to the layer. Such a modified layer may also act as a radiant heater. Thermoplastic recording system. A roll of polyethylene terephthalate tape may be coated in the apparatus shown in Fig. 5 in which the tape is driven from roller 27 to roller 28 while vapour deposition of the zinc-sulphide type layer takes place. Treatment of the tape as described produces a conducting layer on the surface and the tape is then recoated with a thermoplastic layer by spraying and passing over a doctor roller. Electroluminescent device. Fig. 6 shows a collision excitation electroluminescent device including an N type region of any of the zinc and cadmium sulpho-selenide family of phosphors including zinc selenide, zinc sulphide, cadmium sulphide, cadmium selenide, zinc cadmium sulphide, zinc cadmium selenide, zinc cadmium sulpho-selenide, zinc sulpho-selenide, cadmium sulpho-selenide, zinc oxide and mixtures thereof. A P type region 43 is contiguous with the N region and is a compound having a cation selected from Group Ib of the Periodic Table and has the same anion as the N type region. Electrodes 45, 46, of indium, silver or tin, either oxide or reduced are in contact with the P and N layers and the whole is supported on a glass plate 47. The lower electrode may be light reflecting. The P region is 30 rA in thickness and the N region 10 microns. The phosphor may be activated with any of copper, silver, chlorine, bromine, indium, gallium and aluminium while manganese, arsenic and antimony with a coactivator or chlorine are suggested for D.C. operation.. In a further device, Fig. 7 (not shown), a recombination electroluminescent device has an N layer of 5 microns thickness and a P layer 122 greater than one minority carrier diffusion length thick, say 1/2 -1 micron. Each layer should also have sufficient impurities to serve as recombination centres. The device is connected with the junction biased in the forward direction.
机译: 由一种或多种组成的硫化锌型化合物的结晶层表面锌和镉以及氧,硫,硒和碲中的一种或多种都在其表面上形成了一层,其中阳离子被另一种金属离子部分取代。如上所述,金属离子被IB族金属代替,使得相邻的层具有相同的阴离子。原始化合物可能包含合适的活化剂以产生发光,并可能沉积在基材或耐热玻璃或聚对苯二甲酸乙二酯胶带上。如图1所示,可以通过将被电流加热的坩埚4中的锌或镉涂层的气相沉积蒸镀到玻璃板8上而形成硫化锌类层,该玻璃板8由电阻绕组11加热。将该罐抽真空。或者,如果要使用蒸汽反应技术,则通过线圈11加热基材8,蒸发合适的化合物(如氯化锌),同时使硫化氢通过进口管13与氯化锌反应并在板上沉积硫化锌。如果坩埚中包括氯化锰,则硫化锌层是锰和氯化物活化的。在另外的实例中,坩埚包含氯化锌,并且允许的气体是硒化氢或碲化氢。在又一个示例中,元素锌,镉和氯化锌在硫化氢气氛中蒸发。沉积硫化锌型化合物后,将涂覆的基材浸入溶液中,该溶液将化合物中的阳离子交换为铜,银或金。合适的化合物是乙酸铜,硫酸盐,氯化物,溴化物,硝酸盐和碳酸盐,乙酰基铜,丙酮醛和相应的金和银化合物。所使用的盐通常是二价的,但是单价稳定的盐是合适的。它们的溶质可能与还原剂(如硫酸肼和次磷酸钠)一起存在,这些还原剂会导致金属离子以单价状态存在。溶剂可以是水或有机极性液体,例如乙醇或甲醇或乙二醇。由于一价化合物不易溶解,因此可以添加络合剂。建议使用吡啶,氨水,苯胺喹啉和硫脲。据说溶液中的一价离子替代了晶格中的锌或镉,从而形成了硫,硒或碲的铜,银或金化合物的膜或表皮。阴极射线管涂层(图3)。-阴极射线管的面板上有荧光粉层12,如上所述,其中硫化锌类化合物的锌或镉被置换成导电涂层15。加热的挡风玻璃-硫化锌类化合物可沉积在塑料或玻璃挡风玻璃上,以用作防止结冰的加热器。这样的层也可以用作辐射加热器。热塑性记录系统。-在图5所示的设备中,可以涂覆一卷聚对苯二甲酸乙二酯胶带,在该装置中,将胶带从辊27驱动到辊28,同时进行硫化锌型层的气相沉积。如上所述处理带子,在表面上产生导电层,然后用热塑性塑料喷涂机涂覆带子,使之喷涂并通过刮墨辊。电致发光器件。图6示出了碰撞激发电致发光器件,该器件包括锌和硒化硒化硒族的磷光体中的任何一种的N型区域,所述硒化剂包括硒化锌,硫化锌,硫化镉,硒化镉,硫化锌镉,硒化镉锌,硫化锌镉。 -硒化物,硒化锌锌,硒化镉镉,氧化锌及其混合物。 P型区域43与N区域邻接,并且是具有选自元素周期表的IB族的阳离子的化合物,并且具有与N型区域相同的阴离子。铟,银或锡醚氧化物或还原的电极45、46与P和N层接触,并且整体被支撑在玻璃板47上。下电极可以是光反射的。 P区的厚度为30 rA,N区的厚度为10微米。磷光体可以用铜,银,氯,溴,铟,镓和铝中的任何一种来活化,而锰,砷和锑与氯的共活化剂一起被建议用于直流操作。在另一器件中(图7,未示出),重组电致发光器件具有5微米厚的N层和大于一个少数载流子扩散长度厚的P层122。,例如1/2到1微米。每层还应具有足够的杂质以用作重组中心。该设备连接的结点正向偏置.ALSO: 由锌和镉中的一种或两种与氧,硫,硒和碲中的一种或多种组成的硫化锌型化合物的结晶层表面上形成有一层阳离子被另一种金属离子部分取代的表面。如所描述的,金属离子被Ib族金属替代,使得相邻层具有相同的阴离子。原始化合物可以包含合适的活化剂以产生发光,并且可以沉积在耐热玻璃或聚对苯二甲酸乙二醇酯带的基材上。如图1所示,可以通过将锌或镉涂层从通过电流加热的坩埚4上气相沉积到通过电阻绕组11加热的玻璃板8上来气相沉积锌或镉涂层,来生产硫化锌类层。通过出口3将其排空。或者,如果要使用蒸气反应技术,则通过盘管11加热衬底8,并且蒸发合适的化合物例如氯化锌,同时使硫化氢通过入口管13与锌反应。氯化物并在板上沉积硫化锌。如果坩埚中包括氯化锰,则硫化锌层是锰和氯活化的。在另外的实例中,坩埚包含氯化锌,并且允许的气体是硒化氢或碲化氢。在又一个示例中,元素锌镉和氯化锌在硫化氢气氛中蒸发。在沉积硫化锌型化合物之后,将涂覆的基材浸入溶液中,该溶液将化合物中的阳离子交换为铜,银或金。合适的化合物是乙酸铜,硫酸盐,氯化物,溴化物,硝酸盐和碳酸盐,乙酰基铜,丙酮醛和相应的金和银化合物。所使用的盐通常是二价的,但是单价稳定的盐是合适的。它们的溶质可能与还原剂(如硫酸肼和次磷酸钠)一起存在,这些还原剂会导致金属离子以单价状态存在。溶剂可以是水或有机极性液体,例如乙醇或甲醇或乙二醇。由于一价化合物不易溶解,因此可以添加络合剂。建议使用吡啶,氨,苯胺喹啉和硫脲。据说溶液中的单价离子替代了晶格中的锌或镉,从而形成了硫,硒或碲的铜,银或金化合物的膜或表皮。阴极射线管涂层(图3)。阴极射线管的面板上具有磷光体层12,其中如上所述如上所述置换了硫化锌类化合物的锌或镉以形成导电涂层15。加热了挡风玻璃。硫化锌类化合物可沉积在塑料或玻璃挡风玻璃上以用作防止冰形成的加热器。表面改性的导电性提供了与层的连接。这样的改性层还可以充当辐射加热器。热塑性记录系统。可以在图5所示的设备中涂覆一卷聚对苯二甲酸乙二醇酯带,其中将带从辊27驱动到辊28,同时进行硫化锌型层的气相沉积。所述的胶带的处理在表面上产生导电层,然后通过喷涂并在刮墨辊上通过而用热塑性层重新涂覆胶带。电致发光器件。图6示出了碰撞激发电致发光器件,该器件包括锌和硒化硒化镉族磷光体中的任何一种的N型区域,所述磷光体包括硒化锌,硫化锌,硫化镉,硒化镉,硫化锌镉,硒化锌镉,锌镉。硒化亚砜,硒化锌锌,硒化镉镉,氧化锌及其混合物。 P型区域43与N区域邻接,并且是具有选自元素周期表的Ib族的阳离子的化合物,并且具有与N型区域相同的阴离子。氧化的或还原的铟,银或锡的电极45、46与P和N层接触,并且整体被支撑在玻璃板47上。下部电极可以是光反射的。 P区的厚度为30 rA,N区的厚度为10微米。可以用铜,银,氯,溴,铟,镓和铝中的任何一种来活化磷光体,而建议使用助活化剂的锰,砷和锑或氯来进行直流电操作。在另一种装置中,图7(未显示) )重组电致发光器件具有厚度为5微米的N层和厚度大于一个少数载流子扩散长度(例如1/2 -1微米)的P层122。每层还应具有足够的杂质以用作重组中心。器件连接时,结点正向偏置。

著录项

  • 公开/公告号DE1144846B

    专利类型

  • 公开/公告日1963-03-07

    原文格式PDF

  • 申请/专利权人 GEN ELECTRIC;

    申请/专利号DE1961G032055

  • 申请日1961-04-13

  • 分类号C03C17/06;C23C14/32;H01B1;H01J9/22;H01J29/28;H01L21;H01L21/18;H01L31;H01L33;H05B33/10;H05B33/26;

  • 国家 DE

  • 入库时间 2022-08-23 17:14:26

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号