首页> 外国专利> CLOCK SYNCHRONIZING ARRANGEMENT FOR COOPERATIVE COLLISION AVOIDANCE SYSTEM

CLOCK SYNCHRONIZING ARRANGEMENT FOR COOPERATIVE COLLISION AVOIDANCE SYSTEM

机译:协作碰撞避免系统的时钟同步安排

摘要

1275984 Aircraft collision avoidance system BENDIX CORP 7 Nov 1969 [3 Dec 1968] 54564/69 Heading H4D Relates to a clock synchronizing arrangement for a co-operative radio aircraft collision avoidance system (CAS) of the type in which each participating station (fixed or mobile) carries a clock unit comprising a clock counter 22 and slot counter 40, Fig. 3, whose time cycle comprises repeating epochs of three seconds duration, each epoch comprising 2,000 time slots each of duration 1500 Ás and the time cycles of all the stations being maintained in absolute synchronism with a standard (socalled world-wide) time cycle by means of a two-speed sync. counter 24 capable of counting at a rate of 5 MHz or 10 MHz. As described each station transmits a coded epoch-start signal ES at the commencement of each locally defined epoch and each aircraft is allotted a unique own time slot during which it transmits: (1) a so-called Doppler-burst range signal comprising a 200 Ás RF pulse commencing 15 Ás after the start of the own slot period as shown in Fig. 1, the time of reception of said range signal at another station giving the distance between the two stations (i.e. one-way ranging), and (2) other flight data signals, e.g. altitude and altitude rate, for use in a known manner by other participating aircraft to evaluate collision threats. A unique RF frequency may be assigned to each time slot as described in Specification 1,194,470. During certain specified epochs a particular aircraft (designated a request aircraft) uses its Dopplerburst range signal as a sync. request signal SR to synchronize its clock unit with that of another station (designated donor station). The operation of the invention is described with reference to Figs. 1 and 2, the times shown therein (expressed in micro seconds, Ás) being slot time at the donor station. In a normal sync. mode, Fig. 1, the sync counter 24 at the request aircraft starts counting at the 5 MHz rate on completion of the sync. request signal SR (i.e. at local slot time 215 Ás) and the donor sync. counter 24 starts counting at the 10 MHz rate at its local slot time 15 Ás and then changes to the 5 Hz rate on receipt of the sync. request signal SR. When the donor count reaches a predetermined value 7021, the donor station transmits a coded sync. response signal SRp which is received by the request aircraft and changes the counting rate of the request sync. counter to 10 MHz such that, provided any time difference error #t between the time cycles of the two stations is less than a predetermined value #T, the request sync. counter always reaches a predetermined count of 6725 at a time instant 1500 Ás after commencement of the donor time slot regardless of the distance between the two stations and at said instant the sync. counter 24 produces a clock reset pulse CRP which resets the clock counter 22 at the request aircraft so that the next time slot is synchronized with the donor station time cycle. Fig. 1 shows the situation when the time cycles of the two stations are synchronized in which case the sync. response signal SRp is received at the request aircraft at a predetermined time interval of 1440 Ás after the start of its own time slot; it can be shown that for a timing error of Œ#t, the time of reception at the request aircraft of the sync. response signal SRp lags or leads the 1440 Ás local time point by 2#t and this error is automatically corrected by the subsequent higher counting rate (10 MHz) of the request sync. counter. When a request aircraft first enters a CAS zone, coarse synchronization is effected ((standby mode) operation) by the epoch start signals ES from other synchronized stations in the zone but if the distance of the entering aircraft from the nearest synchronized (donor) station is such that the resultant time lag error #t exceeds the allowable value #T as shown in Fig. 2A then: (1) the time cycle of the request aircraft is advanced by a predetermined time interval, e.g. 600 Ás, so that it now leads the donor time cycle, see Fig. 2B, (2) the duration of the own time slot is doubled, and (3) the count number in the request sync. counter 24 producing the clock reset pulse CRP is increased from 6725 to 21,725 by an amount 15,000 corresponding to one slot period at the 10 MHz counting rate. In this mode of operation the sync. response signal SRp produced at the donor station during one time slot is received at the request aircraft during the next donor time slot and the clock reset pulse CRP is produced at the end of said next donor time slot. Detailed operation.-The operation of Fig. 3 is described as used at the request aircraft. In the normal sync. mode, during each own slot the sync. counter 24 is started at local slot time 215 Ás by a start signal SS from the clock counter 22 and the slot counter 40 produces an own slot signal OSS which enables: (1) a gate 42 to apply a sync. request trigger SRT from the clock counter 22 to the transmitter, and (2) a gate 12a to apply the decoded sync. response signal SRp from a decoder 12 to change the counting speed of the sync. counter 24 (from 5 MHz to 10 MHz), the clock counter 22 being reset by the reset pulse CRP from the sync. counter 24 when the count therein reaches 6725. The sync. response signal SRp also turns OFF a normally ON first bi-stable latch 16 (see below). If no sync. response signals SRp are received within a predetermined period, a timer 20 resets and stops the clock counter 22 and slot counter 40; the system then operates in the standby mode. During the standby mode coarse (epoch) synchronization is effected by applying a decoded received epoch-start signal ES from a decoder 10 to start the clock counter 22 and to trigger a second bi-stable latch 18 to produce a first trial signal TS1 on output line 18a which enables a gate 26. If sync. response signals SRp are then received, fine synchronization is effected as described above but if no sync. response signal is received (i.e. #t#T, see above) the sync. counter 24 does not change speed and when it reaches its final count of 6725 it produces an output control signal CS on line 24b which passes through the enabled gate 26 to again rest and stop the counters 22 and 40. When the next epoch-start signal ES is received it again restarts the counters 22, 24 and also triggers the second bi-stable latch 18 to produce a second trial signal TS2 on output line 18b which enables a gate 27 so that if again no sync. response signal SRp is received then the output control signal CS from the sync. counter 24 on line 24b passes through the gate 27 to: (1) advance the clock counter 22 by a number of counts corresponding to 600 Ás thereby ensuring reception of a subsequent sync. response signal SRp as described above, and (2) trigger a third bi-stable latch 32 to enable gates 28 and 29. Clock counter 22 when advanced ignores subsequent epoch-start signals and the next (time advanced) own slot signal OSS on line 40a passes through the enabled gate 29 to: (1) the sync. counter 24 to increase the final count number therein from 672 to 21725, (2) the clock counter 22 to double the duration of the own slot periods, and (3) enable gates 36 and 38 so that the subsequent sync. response signal SRp from the decoder 12 and the sync. counter final output control signal CS on line 24b each advance the slot counter 40 by one count to compensate for the loss of two slot counts from the clock oscillator 22 due to the 600 Ás advance and the lengthening of the own slot period. If no sync. response signal SRp is received during the extended own slot then the control signal CS from the sync. counter 24 passes through the gates 28 and 30 to reset the counters 22, 40 and disable the latch 32 thereby returning the system to the condition that existed when the latch 18 first generated the second trial signal TS2; hence the system will alternately seek to obtain synchronization at standard range and at extended range. Any circuit delays, e.g. in the decoders 10 and 12, may be compensated by suitably biasing the counters 22, 23, 40.
机译:1275984飞机防撞系统BENDIX CORP 1969年11月7日[1968年12月3日] 54564/69标题H4D涉及一种协作式无线电飞机防撞系统(CAS)的时钟同步装置,其中每个参与站(固定站或固定站)移动式)携带一个时钟单元,该时钟单元包括图3的时钟计数器22和时隙计数器40,它们的时间周期包括三秒持续时间的重复时期,每个时期包括2,000个时隙,每个持续时间为1500Ás,所有站的时间周期通过两速同步与标准(所谓的全球)时间周期保持绝对同步。能够以5MHz或10MHz的速率进行计数的计数器24。如所描述的,每个站在每个本地定义的纪元开始时发送编码的纪元开始信号ES,并且为每个飞机分配唯一的自己的时隙,在该时隙中,它发送:(1)所谓的多普勒猝发距离信号,包括200如图1所示,在自己的时隙周期开始后15 s开始的as RF脉冲,在另一个站点上接收所述测距信号的时间给出了两个站点之间的距离(即单向测距),和(2 )其他飞行数据信号,例如高度和高度速率,以供其他参与飞行的飞机以已知方式用于评估碰撞威胁。如规格1194470中所述,可以为每个时隙分配一个唯一的RF频率。在某些指定的时期内,特定的飞机(指定为请求飞机)将其多普勒距离信号用作同步信号。请求信号SR使其时钟单元与另一个站(指定的施主站)的时钟单元同步。参照图1和2描述本发明的操作。如图1和2所示,其中显示的时间(以微秒为单位,µs)是施主站的时隙。正常同步。在图1的模式中,在完成同步之后,请求飞行器处的同步计数器24开始以5MHz的速率进行计数。请求信号SR(即在本地时隙215 As)和施主同步。计数器24在其本地时隙15 s开始以10 MHz的速率计数,然后在收到同步信号后变为5 Hz的速率。请求信号SR。当施主计数达到预定值7021时,施主站发送编码同步。响应信号SRp,由请求飞机接收并更改请求同步的计数率。计数到10MHz,使得在两个站的时间周期之间的任何时间差误差#t小于预定值#T的情况下,请求同步。无论两个站之间的距离如何,在施主时隙开始后的1500Ás时刻,计数器始终达到6725的预定计数,而不管两个站之间的距离如何。计数器24产生时钟复位脉冲CRP,该时钟复位脉冲CRP在请求飞行器处复位时钟计数器22,使得下一个时隙与施主站时间周期同步。图1显示了两个站的时间周期同步时的情况,在这种情况下同步。响应信号SRp在其自己的时隙开始后以1440 s的预定时间间隔在请求飞机上接收;可以看出,对于Œ#t的定时误差,同步请求飞机的接收时间。响应信号SRp落后或领先1440 s当地时间2#t,此错误将通过请求同步的后续更高计数率(10 MHz)自动纠正。计数器。当请求飞机首先进入CAS区域时,来自该区域中其他同步站点的历时开始信号ES会进行粗略同步((待机模式)操作),但是如果进入的飞机与最近的同步(供体)站点之间存在距离如图2A所示,使得时间滞后误差#t超过允许值#T,则:(1)将请求飞机的时间周期提前预定时间间隔,例如600 as,因此它现在领先于施主时间周期,请参见图2B,(2)自己的时隙的持续时间加倍,(3)请求同步中的计数。产生时钟复位脉冲CRP的计数器24以10MHz计数率从6725增加到21,725,增加量15,000对应于一个时隙周期。在这种操作模式下,同步。在下一个施主时隙期间,在请求飞行器处接收在一个时隙在施主站产生的响应信号SRp,并在所述下一个施主时隙的结尾产生时钟复位脉冲CRP。详细的操作。-图3的操作被描述为在请求飞机上使用。在正常同步中。模式,在每个插槽中进行同步。计数器24在本地时隙215 ss处由来自时钟计数器22的启动信号SS启动,并且时隙计数器40产生一个自己的时隙信号OSS,它使:(1)门42施加同步。从时钟计数器22向发送器请求触发SRT(2)门12a以施加解码的同步。来自解码器12的响应信号SRp以改变同步的计数速度。计数器24(从5MHz到10MHz),时钟计数器22由来自同步的复位脉冲CRP复位。当其中的计数达到6725时,计数器24。响应信号SRp也将通常为ON的第一双稳态锁存器16关闭(见下文)。如果没有同步。在预定时间内接收到响应信号SRp,计时器20复位并停止时钟计数器22和时隙计数器40。然后系统在待机模式下运行。在待机模式期间,通过从解码器10施加已解码的接收到的历元开始信号ES,以启动时钟计数器22并触发第二双稳态锁存器18,以在输出上产生第一试验信号TS1,来实现粗略(历元)同步。线18a,其启用门26。然后接收到响应信号SRp,如上所述进行精细同步,但是如果没有同步。接收到同步信号(即#t> #T,请参见上文)。计数器24不改变速度,并且当其达到其最终计数6725时,它在线路24b上产生输出控制信号CS,该输出控制信号CS穿过使能门26以再次静止并停止计数器22和40。当下一个历时开始信号时接收到ES,它再次重新启动计数器22、24,并且还触发第二双稳态锁存器18以在输出线18b上产生第二试验信号TS2,该第二试验信号TS2使能门27,从而如果再次不同步。接收到响应信号SRp,然后从同步接收输出控制信号CS。线路24b上的计数器24穿过门27,以:(1)将时钟计数器22推进相应于600 s的计数,从而确保接收后续同步。如上所述,并且(2)触发第三双稳态锁存器32以使能门28和29。当高级时,时钟计数器22忽略后续的历元开始信号和在线上的下一个(时间提前)自己的时隙信号OSS。 40a通过启用的门29到达:(1)同步。计数器24将其中的最终计数从672增加到21725,(2)时钟计数器22将自身时隙周期的持续时间加倍,(3)使能门36和38,以便随后的同步。来自解码器12的响应信号SRp和同步信号。线路24b上的计数器最终输出控制信号CS每个将时隙计数器40提前一个计数,以补偿由于600 s提前和自身时隙周期的延长而导致时钟振荡器22产生两个时隙计数的损失。如果没有同步。在扩展的自身时隙期间接收到响应信号SRp,然后从同步接收到控制信号CS。计数器24通过门28和30以复位计数器22、40并禁用锁存器32,从而使系统返回到锁存器18首先产生第二试验信号TS2时的状态。因此,系统将交替尝试在标准范围和扩展范围内获得同步。任何电路延迟,例如可以通过适当地偏置计数器22、23、40来补偿解码器10和12中的误差。

著录项

  • 公开/公告号GB1275984A

    专利类型

  • 公开/公告日1972-06-01

    原文格式PDF

  • 申请/专利权人 THE BENDIX CORPORATION;

    申请/专利号GB19690054564

  • 发明设计人

    申请日1969-11-07

  • 分类号G01S11/08;G01S19/14;G01S19/49;G08G5/04;

  • 国家 GB

  • 入库时间 2022-08-23 08:06:30

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号