首页> 外国专利> Methods and apparatus for real-time monitoring, measurement and control of electroosmotic flow

Methods and apparatus for real-time monitoring, measurement and control of electroosmotic flow

机译:实时监测,测量和控制电渗流的方法和设备

摘要

In capillary electrophoresis systems, real-time monitoring and measurement of the electroosmotic flow through a separation capillary is accomplished by coupling the outlet of the separation capillary to an electrically-conductive junction. In one embodiment, this junction is an ion-impermeable or an ion-exchange membrane unit that preferentially exchanges ions having a charge opposite to analyte ions of interest. Within a downstream region of the junction, all axial incremental voltage from the electroosmotic voltage source is terminated, which ensures that downstream electrolyte ion movement is passive, due to active flow created upstream when an incremental axial voltage existed. Upstream electrolyte ion flux is proportional to C.sub.1 ·(&mgr;.sub.e +. mu..sub.eo), where C.sub.1 is the upstream concentration of the electrolyte ion of interest, &mgr;.sub.e is the electrolyte electrophoretic mobility, and &mgr;.sub.eo is the electroosmotic mobility. Downstream, the flux is proportional to C.sub.2 ·&mgr;.sub.eo, where C.sub.2 is the downstream concentration of the electrolyte ion of interest. The fluxes are equal, whereupon &mgr;.sub.eo ≈C.sub.1 . multidot.&mgr;.sub.e /(C.sub.2 -C.sub.1). Since &mgr;.sub.e is known, &mgr;. sub.eo can be determined in real-time by measuring C.sub.2 and C. sub.1. In a second embodiment, the electrically-conductive junction preferably is a grounding capillary that converts plug-like electroosmotic flow to parabolic flow. A parabolic flow characteristic such as streaming potential, streaming current, or pressure differential is measured in real-time to ascertain electroosmotic flow rate. In each embodiment, the realtime measured flow information is feedback-coupled to preferably alter zeta-potential to regulate electrolyte solution flow in the separation capillary.
机译:在毛细管电泳系统中,通过将分离毛细管的出口连接到导电接头上,可以实时监测和测量通过分离毛细管的电渗流。在一个实施方案中,该结是离子不可渗透的或离子交换膜单元,其优先交换具有与感兴趣的分析物离子相反的电荷的离子。在结的下游区域内,来自电渗电压源的所有轴向增量电压均被终止,这确保了下游电解质离子的移动是被动的,这是由于存在增量轴向电压时在上游产生了主动流。上游电解质离子通量与C.sub.1((mg + e.mu.eo))成正比,其中C.sub.1是目标电解质离子的上游浓度,即mg。 is是电解质的电泳迁移率,, eo是电渗迁移率。在下游,通量与C2·eo成比例,其中C2是感兴趣的电解质离子的下游浓度。通量相等,因此&mgr; sub.eo≈ C.sub.1。 multidot.mg /(C.sub.2 -C.sub.1)。由于&mgr; .sub.e是已知的,因此&mgr;。可以通过测量C.sub.2和C.sub.1来实时确定sub.eo。在第二实施例中,导电结优选地是接地毛细管,其将塞状电渗流转换成抛物线流。实时测量抛物线流动特性,例如流动电势,流动电流或压差,以确定电渗流量。在每个实施例中,实时测量的流量信息被反馈耦合以优选地改变ζ电位以调节分离毛细管中的电解质溶液流量。

著录项

  • 公开/公告号US5441613A

    专利类型

  • 公开/公告日1995-08-15

    原文格式PDF

  • 申请/专利权人 DIONEX CORPORATION;

    申请/专利号US19930161942

  • 发明设计人 RANDY M. MCCORMICK;ROY D. ROCKLIN;

    申请日1993-12-03

  • 分类号G01N27/26;G01N27/447;

  • 国家 US

  • 入库时间 2022-08-22 04:04:32

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号