首页> 外国专利> METHOD OF UPSCALING PERMEABILITY FOR UNSTRUCTURED GRIDS

METHOD OF UPSCALING PERMEABILITY FOR UNSTRUCTURED GRIDS

机译:提升非结构网格渗透率的方法

摘要

1. A method of scaling up permeabilities associated with a fine-scale grid of cells representative of a porous medium to permeabilities associated with an unstructured coarse-scale grid of cells representative of the porous medium, comprising the steps of : (a) generating an areally unstructured, Voronoi, computational grid using the coarse-scale grid as the genesis of the computational grid, the cells of the computational grid being smaller than the cells of the coarse-scale grid and each cell of said computational grid and said coarse-scale grid having a node; (b) populating the computational grid with permeabilities associated with the fine-scale grid; (c) developing flow equations for the computational grid, solving the flow equations, and computing inter-node fluxes and pressure gradients for the computational grid; (d) using the fluxes and pressure gradients computed in step (c) to calculate inter-node average fluxes and average pressure gradients associated with the coarse-scale grid; and (e) calculating upscaled permeabilities associated with the coarse-scale grid using the average fluxes and average pressure gradients calculated in step (d). 2. The method of claim 1 wherein inter-node connections of the computational grid cells are parallel to inter-node connections of the coarse-scale grid. 3. The method of claim 1 wherein cells of the computational grid are approximately the same size as the cells of the fine-scale grid. 4. The method of claim 1 wherein cells of the computational grid are smaller than the cells of the fine-scale grid. 5. The method of claim 1 wherein the permeabilities populated in step (b) are assigned to nodes of the computational grid, the permeability assigned to a given node of the computational grid corresponding to a predetermined permeability of a cell of the fine-scale grid that would contain the given node's location if the computational grid was superimposed on the fine-scale grid. 6. The method of claim 5 further comprises calculating the permeability for a given inter-node connection of the computational grid by harmonically averaging the permeabilities at the two nodes forming the given inter-node connection. 7. The method of claim 1 wherein the permeabilities populated in step (b) are assigned to midpoints of a given inter-node connection of the computational grid, the permeability assigned to the given inter-node connection corresponding to a predetermined permeability of a cell of the fine-scale grid that would contain the mid-point of such inter-node connection if the computational grid was superimposed on the fine-scale grid. 8. The method of claim 1 wherein the calculation of the inter-node average fluxes and average pressure gradients in step (d) is determined by using only the fluxes and pressure gradients computed for the inter-node connections of the computational grid that fall within a predetermined sub-domain of the computational node. 9. The method of claim 1 wherein the calculation of the average fluxes and average pressure gradients in step (d) for a given inter-node connection of the coarse-scale grid is determined using only fluxes and pressure gradients computed in step (c) for the inter-node connections of the computational grid that are parallel to the given inter-node connection. 10. The method of claim 1 wherein the permeabilities calculated in step (e) are determined for a given node of the coarse-scale grid. 11. The method of claim 1 wherein the permeabilities calculated in step (e) are determined for a given inter-node connection of the coarse-scale grid by calculating the ratio of the average flux to the average pressure gradient computed in step (d) for the given inter-node connection. 12. The method of claim 1 wherein cells of the fine-scale grid are structured. 13. The method of claim 1 wherein the coarse-scale grid is a PEBI grid. 14. The method of claim 1 wherein both the coarse-scale grid and the computational grid are PEBI grids. 15. The method of claim 1 wherein inter-node connections of the coarse grid forms Delaunay triangles and the computational grid generated in step (a) contains similar, smaller Delaunay triangles equal in number to n2 times the number of Delaunay triangles of the large-scale grid, where n is a predetermined integer refinement ratio used to generate the computational grid. 16. The method of claim 1 wherein all cells are three-dimensional. 17. The method of claim 16 wherein the coarse-scale grid and the computational grid are both unstructured areally and structured vertically. 18. The method of claim 1 further comprises determining inter-node connection transmissibilities of the coarse-scale grid using permeabilities calculated in step (e). 19. The method of claim 1 wherein the flow equations of step (c) are single-phase and steady-state. 20. A method for estimating permeability of each cell of a first grid having a multiplicity of cells of a subterranean geologic domain using a predetermined permeability for each cell of a second grid representative of the domain, said second grid containing a larger number of cells than the first grid, the method comprising: (a) constructing an unstructured, third grid representative of the domain comprising approximately the same or greater number of cells than the second grid, each cell of the first, second, and third grids having a node and each link between two nodes of adjacent cells being an inter-node connection, substantially all of the inter-node connections of the third grid being parallel to the inter-node connections of the first grid; (b) for each node of the third grid, assigning a permeability corresponding to the permeability of a cell of the second grid that contains the node location of the third grid; (c) developing a single-phase, steady-state pressure equation for each cell of the third grid system; (d) solving the pressure equations and computing fluxes and pressure gradients for all inter-node connections of the third grid; (e) computing an estimated permeability for a given connection of the first grid using inter-node connections of the third grid; and (f) repeating step (e) for all connections of the first grid. 21. The method of claim 20 further comprises computing the permeability in step (e) by the additional steps of determining average fluxes and average pressure gradients over sub-domains associated with a given grid inter-node connection of the first grid and calculating a ratio of the average flux to the average pressure gradient, thereby obtaining the permeability for the given inter-node connection of the first grid. 22. The method of claim 20 wherein the permeability computation of step (e) uses only inter-node connections of the third grid that are parallel to inter-node connections of the first grid. 23. The method of claim 20 wherein all grid cells are three-dimensional. 24. The method of claim 23 wherein the second grid and the third grid are each unstructured areally and structured vertically. 25. A method for estimating permeabilities associated with cells of a large-scale grid representative of fluid flow in a porous medium using predetermined permeabilities associated with cells of a small-scale grid also representative of fluid flow in the porous medium, each cell of the large-scale grid having a node and each node being linked to adjacent nodes to form inter-node connections and such connections forming Delaunay triangles, comprising the steps of : (a) constructing a computational grid by dividing each Delaunay triangle of the large-scale grid into a multiplicity of similar, smaller Delaunay triangles, the sides of such smaller Delaunay triangles being inter-node connections of the computational grid and the inter-node connections of the large-scale grid and the computational grid being aligned with each other; (b) assigning permeabilities to the computational grid corresponding to the predetermined permeabilities of the small-scale grid; (c) developing a single-phase, steady-state pressure equation for each cell of the computational grid, solving the pressure equations, and computing fluxes and pressure gradients for all inter-node connections of the computational grid; (d) using the fluxes and pressure gradients computed in step (c) to calculate an average flux and an average pressure gradient for each inter-node connection of the large-scale grid; and (e) calculating a permeability associated with a given inter-node connection of the large-scale grid using the average flux and average pressure gradient calculated in step (d). 26. The method of claim 25 wherein the number of nodes of the computational grid are approximately the same as the number of cells of the small-scale grid. 27. The method of claim 25 wherein the number of nodes of the computational grid are smaller than the number of cells of the small-scale grid. 28. The method of claim 25 wherein the number of similar, smaller Delaunay triangles is n2 times the number of Delaunay triangles of the large-scale grid, where n is a predetermined integer refinement ratio.
机译:1.一种将与代表多孔介质的细胞的细尺度网格相关的渗透率按比例缩放至与代表多孔介质的非结构化细胞的粗尺度网格相关的渗透率的方法,包括以下步骤:(a)产生使用粗尺度网格作为计算网格的起源的非结构化的Voronoi计算网格,计算网格的像元小于粗尺度网格的像元以及所述计算网格和所述粗尺度的每个像元具有节点的网格; (b)用与小规模网格相关的磁导率填充计算网格; (c)为计算网格开发流量方程,求解该流量方程,并为计算网格计算节点间通量和压力梯度; (d)使用在步骤(c)中计算出的通量和压力梯度来计算与粗尺度网格相关的节点间平均通量和平均压力梯度; (e)使用在步骤(d)中计算的平均通量和平均压力梯度来计算与粗尺度网格相关的按比例增加的渗透率。 2.根据权利要求1所述的方法,其中,所述计算网格单元的节点间连接与所述粗尺度网格的节点间连接平行。 3.根据权利要求1所述的方法,其中,所述计算网格的单元的尺寸与所述细尺度网格的单元的尺寸大致相同。 4.如权利要求1所述的方法,其特征在于,所述计算网格的单元小于所述细尺度网格的单元。 5.根据权利要求1所述的方法,其中,将在步骤(b)中填充的磁导率分配给所述计算网格的节点,将磁导率分配给所述计算网格的给定节点对应于所述精细尺度网格的单元的预定磁导率如果将计算网格叠加在细尺度网格上,则它将包含给定节点的位置。 6.根据权利要求5所述的方法,还包括:通过对形成所述给定节点间连接的两个节点处的渗透率进行谐波平均,来计算所述计算网格的给定节点间连接的渗透率。 7.根据权利要求1所述的方法,其中将在步骤(b)中填充的磁导率分配给所述计算网格的给定节点间连接的中点,分配给所述给定节点间连接的磁导率对应于单元的预定磁导率如果将计算网格叠加在精细网格上,则包含该节点间连接的中点的精细网格的“平方”。 8.如权利要求1所述的方法,其特征在于,步骤(d)中的节点间平均通量和平均压力梯度的计算是通过仅使用为所述计算网格的节点间连接计算的通量和压力梯度来确定的。计算节点的预定子域。 9.根据权利要求1所述的方法,其中,仅使用在步骤(c)中计算出的通量和压力梯度来确定对于所述粗尺度网格的给定节点间连接在步骤(d)中的平均通量和平均压力梯度的计算。计算网格的与给定节点间连接平行的节点间连接。 10.根据权利要求1所述的方法,其中,针对所述粗尺度网格的给定节点,确定在步骤(e)中计算出的渗透率。 11.根据权利要求1所述的方法,其中,通过计算在步骤(d)中计算出的平均通量与平均压力梯度之比,为所述粗网格的给定节点间连接确定在步骤(e)中计算出的渗透率。给定的节点间连接。 12.根据权利要求1所述的方法,其中,所述精细栅格的单元被构造。 13.根据权利要求1所述的方法,其中,所述粗尺度网格是PEBI网格。 14.根据权利要求1所述的方法,其中,所述粗尺度网格和所述计算网格都是PEBI网格。 15.根据权利要求1所述的方法,其中,所述粗网格的节点间连接形成Delaunay三角形,并且在步骤(a)中生成的所述计算网格包含相似的,较小的Delaunay三角形,所述三角形的数目等于所述n个大Delaunay三角形数目的n2倍。刻度网格,其中n是用于生成计算网格的预定整数细化比率。 16.根据权利要求1所述的方法,其中所有单元都是三维的。 17.根据权利要求16所述的方法,其中,所述粗尺度网格和所述计算网格都在平面上是非结构化的并且在垂直方向上是结构化的。 18.根据权利要求1所述的方法,其进一步包括使用在步骤(e)中计算出的渗透率来确定所述粗尺度网格的节点间连接透射率。 19.根据权利要求1所述的方法,其中步骤(c)的流动方程是单相和稳态。 20.一种方法,用于使用代表该区域的第二网格的每个单元的预定渗透率来估计具有地下地质域的多个单元的第一网格的每个单元的渗透率,所述第二网格包含比单元多的单元。在第一网格中,该方法包括:(a)构造表示该域的非结构化第三网格,该域包括与第二网格大致相同或更多的单元,第一,第二和第三网格中的每个单元都有一个节点,并且相邻单元的两个节点之间的每条链路均为节点间连接,第三网格的基本上所有节点间连接与第一网格的节点间连接平行。 (b)对于第三网格的每个节点,分配与第二网格的包含第三网格的节点位置的单元的磁导率相对应的磁导率; (c)为第三电网系统的每个单元开发单相稳态压力方程; (d)求解第三网格的所有节点间连接的压力方程式,并计算通量和压力梯度; (e)使用第三网格的节点间连接来计算第一网格的给定连接的估计渗透率; (f)对第一网格的所有连接重复步骤(e)。 21.根据权利要求20所述的方法,其进一步包括在步骤(e)中通过确定与所述第一网格的给定网格节点间连接相关联的子域上的平均通量和平均压力梯度的附加步骤来计算渗透率,并计算比率。平均通量到平均压力梯度的关系,从而获得第一栅格的给定节点间连接的渗透性。 22.根据权利要求20所述的方法,其中步骤(e)的渗透率计算仅使用与所述第一网格的节点间连接平行的所述第三网格的节点间连接。 23.根据权利要求20所述的方法,其中所有网格单元都是三维的。 24.根据权利要求23所述的方法,其中,所述第二格栅和所述第三格栅分别是非结构化的并且是垂直构造的。 25.一种用于估计与代表多孔介质中的流体流动的大尺度网格的单元相关的渗透率的方法,该方法使用与也代表多孔介质中的流体流动的小尺度网格的单元相关的预定渗透率,具有节点并且每个节点链接到相邻节点以形成节点间连接的大型网格,并且这样的连接形成Delaunay三角形,包括以下步骤:(a)通过划分大型的每个Delaunay三角形来构建计算网格网格分成多个相似的较小的Delaunay三角形,这些较小的Delaunay三角形的边是计算网格的节点间连接,而大型网格和计算网格的节点间连接彼此对齐; (b)将渗透率分配给与小规模网格的预定渗透率相对应的计算网格; (c)为计算网格的每个单元开发一个单相稳态压力方程,求解压力方程,并为计算网格的所有节点间连接计算通量和压力梯度; (d)使用在步骤(c)中计算出的通量和压力梯度来计算大型网格的每个节点间连接的平均通量和平均压力梯度; (e)使用在步骤(d)中计算出的平均通量和平均压力梯度来计算与大型网格的给定节点间连接相关的渗透率。 26.根据权利要求25所述的方法,其中,所述计算网格的节点的数量与所述小规模网格的单元的数量大致相同。 27.根据权利要求25所述的方法,其中,所述计算网格的节点的数量小于所述小规模网格的单元的数量。 28.根据权利要求25所述的方法,其中,相似的较小的Delaunay三角形的数量是所述大型网格的Delaunay三角形的数量的n2倍,其中n是预定的整数细化比。

著录项

  • 公开/公告号EA003438B1

    专利类型

  • 公开/公告日2003-04-24

    原文格式PDF

  • 申请/专利权人 EXXONMOBIL UPSTREAM RESEARCH COMPANY;

    申请/专利号EA20020000077

  • 发明设计人 DAWSON AARON G.;KHAN SAMEER A.;

    申请日2000-06-21

  • 分类号G06F17/11;G01N15/08;G01V1/00;

  • 国家 EA

  • 入库时间 2022-08-22 00:03:13

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号