首页> 外国专利> THIN-WALLED MONOLITHIC METAL OXIDE STRUCTURES MADE FROM METALS, AND METHODS FOR MANUFACTURING SUCH STRUCTURES

THIN-WALLED MONOLITHIC METAL OXIDE STRUCTURES MADE FROM METALS, AND METHODS FOR MANUFACTURING SUCH STRUCTURES

机译:由金属制成的薄壁单壁金属氧化物结构及其制造方法

摘要

1. A method for making a monolithic metal oxide structure, said method comprising the steps of: -providing a structure containing a metal selected from the group consisting of iron, nickel, titanium, and copper, wherein the metal-containing structure contains a plurality of surfaces in close proximity to on another, and -heating the metal-containing structure in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces to uniformly oxidize the structure and directly transform the metal to metal oxide. 2. A method according to claim 1, wherein the oxidative atmosphere is air. 3. A method according to claim 1, wherein the metal is iron, and the metal-containing structure is heated below about 1500 degree C to oxidize the iron substantially to hematite. 4. A method according to claim 3, wherein the iron-containing structure is heated between about 750 degree C and about 1200 degree C. 5. A method according to claim 4, wherein the iron-containing structure is heated between about 800 degree C and about 950 degree C. 6. A method according to claim 1, wherein the metal is nickel, and the metal-containing structure is heated below about 1400 degree C to oxidize the nickel substantially to bunsenite. 7. A method according to claim 6, wherein the nickel-containing structure is heated between about 900 degree C and about 1200 degree C. 8. A method according to claim 7, wherein the structure is heated between about 950 degree C and about 1150 degree C. 9. A method according to claim 1, wherein the metal is copper, and the structure is heated below about 1000 degree C to oxidize the copper substantially to tenorite. 10. A method according to claim 9, wherein the structure is heated between about 800 degree C and about 1000 degree C. 11. A method according to claim 10, wherein the structure is heated between about 900 degree C and 950 degree C. 12. A method according to claim 1, wherein the metal is titanium, and the structure is heated below about 1600 degree C to oxidize the titanium substantially to rutile. 13. A method according to claim 12, wherein the titanium-containing structure is heated between about 900 degree C and about 1200 degree C. 14. A method according to claim 13, wherein the structure is heated between about 900 degree C and about 950 degree C. 15. A method for making a magnetite structure comprising providing a structure consisting essentially of plain steel having a plurality of surfaces in close proximity to one another, transforming the plain steel structure to a hematite structure by heating the plain steel structure in an oxidative atmosphere between about 750 degree C and about 1200 degree C while maintaining the close proximity of the steel surfaces to oxidize the plain steel structure such that the hematite structure retains substantially the same physical shape as the plain steel structure, and then de-oxidizing the hematite structure to a magnetite structure by heating the hematite structure in a vacuum between about 1000 degree C to about 1300 degree C such that the magnetite structure retains substantially the same shape, size and wall thickness as the hematite structure. 16. A method according to claim 15, wherein the vacuum pressure is about 0.001 atmospheres. 17. A method according to claim 16, wherein the iron is oxidized to hematite by heating the plain steel structure between about 800 degree C and about 950 degree C, and the hematite is deoxidized to magnetite by heating the hematite structure to between about 1200 degree C and about 1250 degree C. 18. A monolithic metal oxide structure comprising a plurality of adjacent bonded surfaces, obtained from oxidizing a metal-containing structure having a plurality of surfaces in close proximity to one another, containing a metal selected from the group consisting of iron, nickel, copper, and titanium, by heating the metal-containing structure below the melting point of the metal, the monolithic metal oxide structure having substantially the same physical shape as the metal-containing structure. 19. A thin-walled monolithic flow divider consisting essentially of a metal oxide selected from the group consisting of iron oxides, nickel oxides, titanium oxides, and copper oxides, the flow divider having a wall thickness less than about one millimeter. 20. A flow divider according to claim 19, wherein the metal oxide is an iron oxide selected from the group consisting of hematite, magnetite, and combinations thereof. 21. A flow divider according to claim 20, wherein the wall thickness is about 0.07 to about 0.3 mm. 22. An open-celled monolithic metal oxide structure comprising a plurality of adjacent bonded corrugated layers 86 made of a metal oxide selected from the group consisting of iron oxides, nickel oxides, copper oxides and titanium oxides, wherein the metal oxide structure is obtained by oxidizing adjacent corrugated metal layers containing a metal selected from the group consisting of iron, nickel, copper and titanium, by heating the metal-containing structure below the melting point of the metal. 23. An open-celled structure according to claim 22, wherein the metal oxide is an iron oxide selected from the group consisting of hematite, magnetite, and combinations thereof. 24. An open-celled structure according to claim 23, wherein cells of the corrugated layers are triangular in shape, and adjacent corrugated layers are stacked while mirror reflected. 25. An open-celled structure according to claim 24, wherein at least some of the triangular corrugated layers comprise parallel channels positioned at an angle alpha to a flow axis which bisects the angle formed by the parallel channels of adjacent corrugated layers. 26. An open-celled structure according to claim 25, wherein the parallel channels of a first corrugated layer are positioned to intersect at an angle 2alpha to the parallel channels of a second corrugated layer. 27. An open-celled structure according to claim 26, wherein the angle alpha is from 10 degree to 45 degree . 28. An open-celled structure according to claim 24, wherein the triangular cells are formed with a triangle apex angle of about 60 degree to about 90 degree . 29. An open-celled structure according to claim 28, wherein the corrugated layers have a cell density of about 250 to about 1000 cells/in2. 30. An open-celled structure according to claim 22, wherein the thickness of each corrugated metal layer is about 0.025 to about 0.1 mm. 31. A method of making an open-celled monolithic metal oxide structure comprising providing a plurality of adjacent corrugated layers in close proximity to one another made of a metal selected from the group consisting of iron, nickel, copper, and titanium, and oxidizing the metal by heating the layers below the melting point of the metal while maintaining the close proximity of the layers to form bonded adjacent corrugated metal oxide layers selected from the group consisting of iron oxides, nickel oxides, copper oxides and titanium oxides. 32. A method according to claim 31, wherein the metal is iron, and the metal oxide formed is selected from the group consisting of hematite, magnetite, and combinations thereof. 33. A method according to claim 32, wherein the corrugated metals layers are triangular in shape, and adjacent layers are stacked while mirror reflected. 34. A method according to claim 33, wherein at least some of the triangular corrugated metal layers comprise parallel channels positioned at an angle alpha to a flow axis which bisects the angle formed by the parallel channels of adjacent corrugated layers. 35. A method according to claim 34, wherein the parallel channels of a first corrugated layer are positioned to intersect at an angle 2alpha to the parallel channels of a second corrugated layer. 36. A method according to claim 35, wherein the angle alpha is from 10 degree to 45 degree . 37. A method according to claim 33, wherein the triangular cells are formed with a triangle apex angle 6 of about 60 degree to about 90 degree . 38. A method according to claim 37, wherein the corrugated metal layers have a cell density of about 250 to about 1000 cells/in2. 39. A method according to claim 33, wherein a pressure of up to about 50 gm/cm2 is applied to the corrugated metal layers during heating to maintain the close proximity of the layers. 40. A method according to claim 31, wherein the thickness of each corrugated metal layer is about 0.025 to about 0.1 mm. 41. A method of making a metal oxide filter comprising providing a metal source containing a plurality of metal filaments in close proximity to one another and selected from the group consisting of one or more of iron, nickel, copper, and titanium filaments, and heating the metal filaments in an oxidative atmosphere below the melting point of the metal while maintaining the close proximity of the filaments to oxidize the filaments and directly transform the metal to metal oxide, wherein the metal oxide structure retains substantially the same physical shape as the metal source. 42. A method according to claim 41, wherein the metal is iron. 43. A method according to claim 42, wherein the filaments have a diameter of about 10 to about 100 microns. 44. A method according to claim 43, wherein the metal source is selected from the group consisting of felts, textiles, wools, and shavings. 45. A method according to claim 44, wherein a pressure of up 91 to about 30 gm/cm2 is applied to the metal source during heating to maintain the close proximity of the filaments. 46. A method according to claim 42 wherein the iron filaments are heated between about 750 degree C and about 1200 degree C to oxidize the iron to hematite. 47. A method according to claim 46, wherein the iron filaments are heated between about 800 degree C and about 950 degree C. 48. A method according to claim 42, wherein the iron source consists essentially of plain steel
机译:1.一种用于制造整体式金属氧化物结构的方法,所述方法包括以下步骤:-提供包含选自铁,镍,钛和铜的金属的结构,其中所述含金属的结构包含多个彼此相邻的表面,并且-在低于金属熔点的温度下在氧化气氛中加热含金属的结构,同时保持金属表面的近距离以均匀地氧化该结构并直接转化金属金属氧化物。 2.根据权利要求1所述的方法,其中,所述氧化气氛是空气。 3.根据权利要求1所述的方法,其中,所述金属是铁,并且将所述含金属的结构加热至低于约1500℃以将所述铁基本上氧化成赤铁矿。 4.根据权利要求3的方法,其中所述含铁结构在约750℃至约1200℃之间加热。5.根据权利要求4的方法,其中所述含铁结构在约800℃之间加热。 6.根据权利要求1所述的方法,其中,所述金属是镍,并且将所述含金属的结构加热到约1400℃以下,以将所述镍基本上氧化成亚砷酸盐。 7.根据权利要求6的方法,其中将所述含镍结构在约900℃至约1200℃之间加热。8.根据权利要求7的方法,其中所述结构在约950℃至约1150℃之间加热9.根据权利要求1所述的方法,其中,所述金属是铜,并且将所述结构加热到低于约1000℃以将所述铜基本上氧化为球铁矿。 10.根据权利要求9的方法,其中所述结构在约800℃至约1000℃之间加热。11.根据权利要求10的方法,其中所述结构在约900℃至950℃之间加热。12 2.根据权利要求1所述的方法,其中,所述金属是钛,并且将所述结构加热到低于约1600℃以将所述钛基本氧化成金红石。 13.根据权利要求12的方法,其中所述含钛结构在约900℃至约1200℃之间加热。14.根据权利要求13的方法,其中所述结构在约900℃至约950℃之间加热15.一种制造磁铁矿结构的方法,该方法包括提供一种结构,该结构基本上由具有多个彼此紧邻的表面的素钢组成,通过在一个炉中加热该素钢结构而将素钢结构转变成赤铁矿结构。在大约750摄氏度和大约1200摄氏度之间的氧化性气氛中,同时保持钢表面的紧密接触以氧化普通钢结构,从而使赤铁矿结构保持与普通钢结构基本相同的物理形状,然后对钢进行脱氧。通过在约1000℃至约1300℃之间的真空中加热赤铁矿结构,将赤铁矿结构转变成磁铁矿结构。在磁铁矿结构上保持与赤铁矿结构基本相同的形状,大小和壁厚。 16.根据权利要求15所述的方法,其中所述真空压力为约0.001个大气压。 17.根据权利要求16所述的方法,其中,通过在约800℃至约950℃之间加热所述普通钢结构,将铁氧化为赤铁矿,并且通过将所述赤铁矿结构加热至约1200℃,将所述赤铁矿脱氧为磁铁矿。 18.一种整体金属氧化物结构,其包含多个相邻的结合表面,所述结合表面是通过氧化具有彼此紧邻的多个表面的含金属结构而获得的,其包含选自以下的组的金属:通过将含金属的结构加热到低于金属的熔点,从而将铁,镍,铜和钛制成单块金属氧化物结构,其物理形状与含金属的结构基本相同。 19.一种薄壁整体式分流器,该分流器主要由选自由氧化铁,氧化镍,氧化钛和氧化铜组成的组的金属氧化物组成,该分流器的壁厚小于约一毫米。 20.根据权利要求19所述的分流器,其中,所述金属氧化物是选自赤铁矿,磁铁矿及其组合的铁氧化物。 21.根据权利要求20所述的分流器,其中,所述壁厚为约0.07至约0.3mm。 22.一种开孔的整体式金属氧化物结构,包括多个相邻的由金属氧化物制成的粘结的波纹层86,所述金属氧化物选自氧化铁,氧化镍,氧化铜和氧化钛。,其中金属氧化物结构是通过将包含金属的相邻波纹金属层氧化至低于金属的熔点而得到的,该相邻波纹金属层包含选自铁,镍,铜和钛的金属,所述波纹状金属层被氧化。 23.根据权利要求22所述的开孔结构,其中所述金属氧化物是选自赤铁矿,磁铁矿及其组合的铁氧化物。 24.根据权利要求23所述的开孔结构,其中,所述波纹层的单元为三角形,并且在镜面反射的同时堆叠相邻的波纹层。 25.根据权利要求24所述的开孔结构,其中,所述三角形波纹层中的至少一些包括平行通道,所述平行通道以与流动轴线成α角的角度定位,所述流动轴线将相邻波纹层的平行通道所形成的角度二等分。 26.根据权利要求25所述的开孔结构,其中,第一波纹层的平行通道定位成与第二波纹层的平行通道以2α角相交。 27.根据权利要求26所述的开孔结构,其中,所述角度α为10度至45度。 28.根据权利要求24所述的开孔结构,其中,所述三角形单元形成为具有约60度至约90度的三角形顶角。 29.根据权利要求28所述的开孔结构,其中所述波纹层的孔密度为约250至约1000个孔/ in 2。 30.根据权利要求22所述的开孔结构,其中,每个波纹金属层的厚度为约0.025至约0.1mm。 31.一种制造开孔单片金属氧化物结构的方法,包括提供彼此相邻的多个相邻的波纹层,所述波纹层由选自铁,镍,铜和钛的金属制成,并氧化所述波纹层。通过将各层加热到金属的熔点以下,同时保持各层的紧密接近性,从而形成结合的相邻波纹状金属氧化物层来形成金属,该相邻的波纹状金属氧化物层选自氧化铁,氧化镍,氧化铜和氧化钛。 32.根据权利要求31所述的方法,其中,所述金属是铁,并且所形成的金属氧化物选自赤铁矿,磁铁矿及其组合。 33.根据权利要求32所述的方法,其中,所述波纹状金属层的形状为三角形,并且在镜面反射的同时堆叠相邻的层。 34.根据权利要求33所述的方法,其中,所述三角形波纹金属层中的至少一些包括平行通道,所述平行通道以与流动轴线成α角的角度定位,所述流动轴线将由相邻波纹层的平行通道形成的角二等分。 35.根据权利要求34所述的方法,其中,第一波纹层的平行通道定位成与第二波纹层的平行通道以2α角相交。 36.根据权利要求35所述的方法,其中,所述角度α为10度至45度。 37.根据权利要求33所述的方法,其中,所述三角形单元形成为具有约60度至约90度的三角形顶角6。 38.根据权利要求37所述的方法,其中所述波纹状金属层具有约250至约1000个孔/ in 2的孔密度。 39.根据权利要求33所述的方法,其中在加热期间向所述波纹状金属层施加高达约50gm / cm 2的压力以保持所述层的紧密接近。 40.根据权利要求31所述的方法,其中,每个波纹金属层的厚度为约0.025至约0.1mm。 41.一种制造金属氧化物过滤器的方法,包括提供金属源,所述金属源包含彼此紧邻的并选自铁,镍,铜和钛丝中的一种或多种的多根金属丝,并加热金属丝在低于金属熔点的氧化气氛中,同时保持丝的紧密接近以氧化丝并直接将金属转化为金属氧化物,其中金属氧化物结构保持与金属源基本相同的物理形状。 42.根据权利要求41的方法,其中金属是铁。 43.根据权利要求42所述的方法,其中,所述细丝的直径为约10至约100微米。 44.根据权利要求43所述的方法,其中,所述金属源选自毛毡,纺织品,羊毛和刨花。 45.根据权利要求44所述的方法,其中在加热期间向所述金属源施加高达91至约30gm / cm 2的压力以维持所述长丝的紧密接近。 46.根据权利要求42所述的方法,其中,所述铁丝在约750℃至约1200℃之间加热以将铁氧化成赤铁矿。 47.根据权利要求46所述的方法48.根据权利要求42所述的方法,其中,将所述铁丝在约800℃至约950℃之间加热。48.根据权利要求42所述的方法,其中,所述铁源基本上由普通钢组成

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号