首页> 外国专利> Compensation of radiation damping during selective pulses in NMR spectroscopy

Compensation of radiation damping during selective pulses in NMR spectroscopy

机译:NMR光谱中选择脉冲期间的辐射衰减补偿

摘要

A method for compensating radiation damping (=RD) effects during selective or non-selective radio frequency (=rf) pulses in nuclear magnetic resonance (=NMR) spectroscopy comprises the following steps:1) Choose an rf pulse suitably shaped for a selective or non-selective excitation, inversion or refocussing experiment and calculate the expected transverse magnetisation <math display="block"><mrow><msub><mrow><mtext>M</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><msub><mrow><mtext>(t) = M</mtext></mrow><mrow><mtext>x</mtext></mrow></msub><msub><mrow><mtext>(t) + i M</mtext></mrow><mrow><mtext>y</mtext></mrow></msub><mtext>(t),</mtext></mrow></math> where i = <math display="inline"><mrow><msqrt><mtext>-1</mtext></msqrt></mrow></math> by solving the Bloch equations on-resonance, assuming that there is no RD;2) Calibrate the rf amplitude on-resonance on a sample with little RD;3) Estimate the RD rate <math display="block"><mrow><msub><mrow><mtext>R</mtext></mrow><mrow><mtext>rd</mtext></mrow></msub><msub><mrow><mtext> = 1 / T</mtext></mrow><mrow><mtext>rd</mtext></mrow></msub><msub><mrow><mtext> = 2πγηQM</mtext></mrow><mrow><mtext>0</mtext></mrow></msub><mtext>,</mtext></mrow></math> for a sample with RD, where γ is the gyromagnetic ratio, η is the filling factor, Q is the quality factor and M0 is the equilibrium magnetisation;4) Define a compensated rf pulse shape using the estimate of step 3), given by <math display="block"><mrow><msub><mrow><mtext>ω</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><msup><mrow><mtext> </mtext></mrow><mrow><mtext>comp</mtext></mrow></msup><msub><mrow><mtext>(t) = ω</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><msup><mrow><mtext> </mtext></mrow><mrow><mtext>unc</mtext></mrow></msup><msub><mrow><mtext>(t) + ω</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><msup><mrow><mtext> </mtext></mrow><mrow><mtext>corr</mtext></mrow></msup><msub><mrow><mtext>(t) = ω</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><msup><mrow><mtext> </mtext></mrow><mrow><mtext>unc</mtext></mrow></msup><msub><mrow><mtext>(t) + i R</mtext></mrow><mrow><mtext>rd</mtext></mrow></msub><msub><mrow><mtext> M</mtext></mrow><mrow><mtext>+</mtext></mrow></msub><mtext>(t) ,</mtext></mrow></math> where i = <math display="inline"><mrow><msqrt><mtext>-1</mtext></msqrt></mrow></math> , ω+unc(t) is the ordinary uncompensated shape of the selective or non-selective rf pulse and M+(t) is the time dependent transverse magnetisation;5) Record the on-resonance response for the said selective or non-selective excitation, inversion or refocussing experiment.;This method has general applicability for any amplitude or frequency modulated rf pulse and presents a general way to compensate for radiation damping during the application of selective rf pulses.
机译:一种用于补偿核磁共振(= NMR)光谱中的选择性或非选择性射频(= rf)脉冲期间的辐射衰减(= RD)效应的方法,包括以下步骤: 1)选择适合于选择性或非选择性激发,反演或重新聚焦实验的射频脉冲,并计算预期的横向磁化强度id =“ matha01”> <![CDATA [ M + (t)= M x < / msub> (t)+ i M y (t ), ]]> 其中,我= <![CDATA [ -1 ]]> ,通过求解Bloch方程的共振,假设没有RD; 2)校准具有少量RD的样品的rf振幅谐振; 3)估计RD率 <![CDATA [<数学显示= “ block”> R rd = 1 / T rd =2πγηQM < / mrow> 0 ]]> RD的样本,其中γ是旋磁比,η是填充因子,Q是品质因子,M 0 是平衡磁化强度; 4)定义补偿的射频脉冲形状,使用步骤3)的估计值,由 <![CDATA [ ω提供 + comp (t)=ω + unc ( t)+ω + corr (t)=ω + unc (t)+ i R rd M + (t), < / mrow> ]]> 其中,我= <![CDATA [ -1 ]]> ,ω + unc (t)是选择性或非选择性rf脉冲的普通未补偿形状,M + (t)是随时间变化的横向磁化强度; 5)记录下选择性或非选择性激发,反演或重聚焦实验的共振响应。 ;该方法对任何振幅或频率模量具有普遍适用性ted rf脉冲,并提出了一种在施加选择性rf脉冲期间补偿辐射衰减的一般方法。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号