首页> 外国专利> Sensor element to spectroscopically measure infrared radiation, comprises substrate, membrane formed on substrate upper side, cavity formed below the membrane in the substrate, thermopile structure, filtering device, and thermopile cells

Sensor element to spectroscopically measure infrared radiation, comprises substrate, membrane formed on substrate upper side, cavity formed below the membrane in the substrate, thermopile structure, filtering device, and thermopile cells

机译:用于光谱测量红外辐射的传感器元件,包括基板,在基板上侧形成的膜,在基板中的膜下方形成的腔,热电堆结构,过滤装置和热电堆电池

摘要

The sensor element comprises a substrate (1), a membrane formed on an upper side of the substrate, a cavity formed below the membrane in the substrate, a thermopile structure with lateral thermopile pairs, which have a first thermal shank made of a first semiconductor material and a second thermal shank made of a second semiconductor material, a filtering device provided for wavelength selective transmission of the infrared radiation over an adhesive layer on the membrane, and thermopile cells. Seebeck coefficients of the semiconductor materials are different. The sensor element comprises a substrate (1), a membrane formed on an upper side of the substrate, a cavity formed below the membrane in the substrate, a thermopile structure with lateral thermopile pairs, which have a first thermal shank made of a first semiconductor material and a second thermal shank made of a second semiconductor material, a filtering device provided for wavelength selective transmission of the infrared radiation over an adhesive layer on the membrane, and thermopile cells. Seebeck coefficients of the semiconductor materials are different. The first and second semiconductor materials have dopings of the same type of charge carrier (p, n). The first and second thermal shanks are directly contacted with one another in a contact surface. Both of the thermal shanks are p-doped or n-doped. A first insulating intermediate layer (2) covers the substrate outside of the cavity and extends itself over the cavity. A second insulating intermediate layer (4) is formed on a first semiconductor layer (3) of the first thermal shank, and a second semiconductor layer of the second thermal shank is formed on the second insulating intermediate layer. A contact opening (5), in which the contact surface is formed between the thermal shanks, is formed in the second insulating intermediate layer. The first thermal shank is structured in the first semiconductor layer. The second insulating intermediate layer covers the first insulating intermediate layer and the structured first semiconductor layer. The second semiconductor layer, in which the second thermal shank is formed, is applied on the second insulating intermediate layer. The second thermal shank is contacted with the first thermal shank over the contact surface formed in the contact opening. A third insulating intermediate layer covers the second semiconductor layer. An absorber layer is applied and structured on the third insulating intermediate layer for absorbing the incident infrared radiation. A structured metal layer is applied for contacting the first and/or the second semiconductor layers. The lateral thermopile pairs are arranged next to each other or on the membrane, where each thermopile pair is formed from the first thermal shank and the second thermal shank over the first thermal shank and contacted with the first thermal shank. The thermopile pairs are separated by trenches, which are formed in the membrane and subsequently filled with a closing layer. Access holes are formed in some trenches for etching the cavity below the membrane. A cap substrate is fastened in vacuum-tight connections on the coated and the structured substrate. A further cavity is formed in the cap substrate, so that the membrane is arranged between the cavity of the cap substrate and the cavity formed in the substrate. One of the semiconductor materials is lowly doped and the other semiconductor material is highly doped. The combination of the both semiconductor materials of the both semiconductor layers is obtained from n-silicon and n +-silicon, p-silicon and p +-silicon, n-germanium and n +-germanium and n-silicon and n +-silicon-germanium. Each of the thermopile cells has the cavity formed in the substrate and the membrane formed above the cavity with thermopile pairs. The thermopile cells are laterally formed next to each other and are mutually contacted. An independent claim is included for a method for producing a sensor element.
机译:该传感器元件包括衬底(1),在衬底的上侧上形成的膜,在衬底中的膜之下形成的腔,具有侧向热电堆对的热电堆结构,其具有由第一半导体制成的第一热柄。材料和由第二半导体材料制成的第二热柄,提供用于在膜上的粘合剂层上选择性地透射红外辐射的过滤装置以及热电堆电池。半导体材料的塞贝克系数不同。该传感器元件包括衬底(1),在衬底的上侧上形成的膜,在衬底中的膜之下形成的腔,具有侧向热电堆对的热电堆结构,其具有由第一半导体制成的第一热柄。材料和由第二半导体材料制成的第二热柄,提供用于在膜上的粘合剂层上选择性地透射红外辐射的过滤装置以及热电堆电池。半导体材料的塞贝克系数不同。第一和第二半导体材料具有相同类型的电荷载流子(p,n)的掺杂。第一和第二热柄在接触表面中彼此直接接触。这两个热柄都是p掺杂或n掺杂的。第一绝缘中间层(2)覆盖空腔外部的衬底,并在空腔上延伸。在第一热柄的第一半导体层(3)上形成第二绝缘中间层(4),在第二绝缘中间层上形成第二热柄的第二半导体层。在第二绝缘中间层中形成有接触开口(5),在该接触开口中在热柄之间形成了接触表面。第一热柄构造在第一半导体层中。第二绝缘中间层覆盖第一绝缘中间层和结构化的第一半导体层。其中形成有第二热柄的第二半导体层被施加在第二绝缘中间层上。第二热柄在形成于接触开口中的接触表面上与第一热柄接触。第三绝缘中间层覆盖第二半导体层。在第三绝缘中间层上施加并构造吸收体层,以吸收入射的红外辐射。施加结构化金属层以接触第一和/或第二半导体层。横向热电堆对彼此相邻或布置在膜上,其中每个热电堆对由第一热柄和第二热柄在第一热柄上方形成并与第一热柄接触。热电偶对由在膜中形成并随后填充有封闭层的沟槽分开。在一些沟槽中形成通孔,以蚀刻膜下方的腔。盖基板通过真空密封连接固定在涂覆的和结构化的基板上。在盖基板中形成另一个空腔,从而将膜布置在盖基板的空腔与在基板中形成的空腔之间。一种半导体材料是低掺杂的,另一种半导体材料是高掺杂的。两种半导体层的两种半导体材料的组合是从n-硅和n +>-硅,p-硅和p +>-硅,n-锗和n +>-锗以及n-硅和n获得的+>-硅锗。每个热电堆单元具有在基板中形成的腔以及在热腔对上方形成在腔上方的膜。热电堆彼此相邻地横向形成并且相互接触。包括用于制造传感器元件的方法的独立权利要求。

著录项

  • 公开/公告号DE102008002157A1

    专利类型

  • 公开/公告日2009-12-03

    原文格式PDF

  • 申请/专利权人 ROBERT BOSCH GMBH;

    申请/专利号DE20081002157

  • 发明设计人 ULBRICH NICOLAUS;

    申请日2008-06-02

  • 分类号H01L35/32;H01L35/34;B81B7/02;G01J3;

  • 国家 DE

  • 入库时间 2022-08-21 18:29:01

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号