首页> 外国专利> Photoelectric Infrared CASCADE BASED nanoheterostructures InAs / GaAsN on a substrate of gallium arsenide

Photoelectric Infrared CASCADE BASED nanoheterostructures InAs / GaAsN on a substrate of gallium arsenide

机译:砷化镓衬底上基于光电红外CASCADE的纳米异质结构InAs / GaAsN

摘要

The proposed utility model relates to a semiconductor nanoheterostructures photovoltaic cells based on compounds of elements of the III and V of the periodic table, such as InAs, GaAs, GaN, GaP, InP and solid solutions of these compounds are used for the manufacture of solar cells, i.e. converting light energy from the sun into electrical energy, including multijunction (multistage).; Object of the present utility model, to provide an efficient photoelectric infrared cascade original design based nanoheterostructures InAs / GaAsN on a substrate of gallium arsenide, operating at wavelengths up to 1200 nm at room temperature (300 K). Using this stage as part of two-stage (the first stage on the basis of GaAs, a second stage on the basis of InAs / GaAsN) and three-stage (the first stage on the basis of InGaP, a second stage on the basis of GaAs, a third stage on the basis of InAs / GaAsN) solar cells allows to extend the range of the converted solar radiation in longer wavelengths in the solar spectrum up to wavelengths up to 1200 nm, and thereby, to increase their efficiency. Using this stage as part of a four (first stage on the basis of InGaP, a second stage on the basis of GaAs, a third stage on the basis of InAs / GaAsN fourth stage based on Ge) solar cells produced on Ge substrates, increases the efficiency of conversion of solar radiation in the spectral range 870 -1200 nm, to increase the open circuit voltage of the solar cell and thereby increase its efficiency.; Technical result, allowing to perform the task, is to use layers of the compounds and solid solutions which do not contain antimony, in particular nanoheterostructures InAs / GaAsN lowest energy optical transitions of 1.00 eV, i.e., 0.4 eV less than the lowest energy optical transitions in gallium arsenide. Moreover, the average lattice parameter used nanoheterostructures InAs / GaAsN practically coincides with the GaAs lattice parameter, and forming a gallium arsenide nanoheterostructures surface does not lead to crystal defects such as misfit dislocations.; Technical result is achieved due to the fact that the active region of the photoelectric infrared cascade based nanoheterostructures InAs / GaAsN consists of alternating ultrathin layers of narrow bandgap binary compound InAs and thicker layers of ternary solid GaAsN solution with a higher band gap where the distance between the ultrathin layers narrow bandgap binary InAs compound is selected so as to provide efficient overlap of the wave functions of carriers are localized in the region of these layers, in Meas area of ​​6-11 nm, and the thickness of ultrathin layers of narrow bandgap InAs binary compound of less than 0.5 nm, that is selected so as to prevent the formation of three-dimensional islands of indium arsenide on the epitaxial surface. The active area of ​​the proposed nanoheterostructures not doped with any impurity. Alloy p- and n-type doped only adjacent to the active region layers of gallium arsenide, as a result, are formed inside and nanogetsrostruktura pin electrical field separating the minority charge carriers in the active region. Asking nanogeterostruktur shows high quantum efficiency of conversion of optical radiation, an external quantum efficiency greater than 75% at zero reflection, which corresponds to an internal quantum efficiency of 90%, and also exhibits a high value of the open circuit voltage than 0.4 V. Moreover, when implementing a photoelectric infrared cascade are used only layers are binary compounds of InAs, GaAs, and the ternary solid solutions GaAsN, and which layers are either solid solutions containing indium and Zot at the same time, for example InGaAsN, absent, thereby increasing the life time of minority carriers but due to the reduced density of crystalline defects. Using similar nanoheterostructures InP / GaPAsN, with alternate ultrathin layers of InP and a wide-band layers GaPAsN, when forming a photoelectric cascade visible radiation range on substrates GaP and Si, with an average lattice parameter close to that parameter of said substrates also leads to the efficient conversion of solar radiation into electricity. The minimum energy optical transitions in superlattices changed by changing the period of the superlattice and elemental composition forming superlattice layers GaAsN, which vary only by changing the gallium flux on enitaksialnuyu surface. Also, instead of gallium arsenide substrate, as an alternative, it may be used a germanium substrate.
机译:本实用新型涉及一种基于周期表中III和V族元素的化合物的半导体纳米异质结构光伏电池,如InAs,GaAs,GaN,GaP,InP的固溶体,这些化合物的固溶体用于制造太阳能。细胞,即将来自太阳的光能转换为电能,包括多结(多级);本实用新型的目的是在砷化镓衬底上提供一种基于高效光电红外级联原始设计的纳米异质结构InAs / GaAsN,其在室温(300 K)下的最大波长为1200 nm。将此阶段用作两阶段(基于GaAs的第一阶段,基于InAs / GaAsN的第二阶段)和三阶段(基于InGaP的第一阶段,基于第二阶段的一部分)的一部分在GaAs制造的第三阶段中,基于InAs / GaAsN的太阳能电池可将转换后的太阳辐射在太阳光谱中更长波长范围内扩展到高达1200 nm,从而提高其效率。使用此阶段作为在Ge衬底上生产的四个太阳能电池(基于InGaP的第一阶段,基于GaAs的第二阶段,基于InAs / GaAsN的第四阶段(基于Ge的第四阶段))的一部分,可以增加在870-1200nm光谱范围内的太阳辐射的转换效率,以增加太阳能电池的开路电压,从而提高其效率。技术成果允许执行该任务,是使用不包含锑的化合物和固溶体层,尤其是纳米异质结构InAs / GaAsN的最低能量光学跃迁为1.00 eV,即比最低能量光学跃迁小0.4 eV在砷化镓中。此外,使用的纳米异质结构InAs / GaAsN的平均晶格参数实际上与GaAs晶格参数一致,并且形成砷化镓纳米异质结构的表面不会导致晶体缺陷,例如失配位错。由于基于光电红外级联的纳米异质结构InAs / GaAsN的活性区域由窄带隙二元化合物InAs的交替超薄层和具有较高带隙的三元固体GaAsN溶液的较厚层交替交替构成,因此获得了技术成果选择超薄层窄带隙二元InAs化合物,以使载流子的波函数有效重叠在这些层的区域内,在6-11 nm的Meas区域中,并且窄的超薄层的厚度选择小于0.5nm的带隙InAs二元化合物是为了防止在外延表面上形成铟的三维岛。拟议的纳米异质结构的活性区域未掺杂任何杂质。结果,在内部形成了仅与砷化镓的有源区层相邻的p型和n型合金,并且在有源区中将少数电荷载流子分开的nanogetsrostruktura pin电场。询问纳米机械结构显示出高的光辐射转换量子效率,零反射时的外部量子效率大于75%,相当于内部量子效率为90%,并且还显示出高于0.4 V的开路电压值。此外,当实施光电红外级联时,仅层是InAs,GaAs和三元固溶体GaAsN的二元化合物,并且哪一层是同时包含铟和Zot的固溶体,例如不存在InGaAsN。增加了少数载流子的寿命,但是由于降低了晶体缺陷的密度。当在衬底GaP和Si上形成光电级联可见光辐射范围时,使用类似的纳米异质结构InP / GaPAsN,交替的InP超薄层和宽带GaPAsN层时,平均晶格参数接近所述衬底的该参数也会导致将太阳辐射有效地转化为电能。超晶格中的最小能量光学跃迁通过改变形成超晶格层GaAsN的超晶格和元素组成的周期而改变,其仅通过改变enitaksialnuyu表面上的镓通量而改变。另外,替代砷化镓衬底,可以使用锗衬底。

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号